Molecular Breeding

, 36:29 | Cite as

Efficiency of genomic selection for tomato fruit quality

  • Janejira Duangjit
  • Mathilde Causse
  • Christopher Sauvage


Fruit quality is polygenic; each component has variable heritability and is difficult to assess. Genomic selection, which allows the prediction of phenotypes based on the whole-genome genotype, could vastly help to improve fruit quality. The goal of this study is to evaluate the accuracy of genomic selection for several metabolomic and quality traits by cross-validation and to estimate the impact of different factors on its accuracy. We analyzed data from 45 phenotypic traits and genotypic data obtained from a previous study of genetic association on a collection of 163 tomato accessions. We tested the influence of (1) the size of training population, (2) the number and density of molecular markers and (3) individual relatedness on the accuracy of prediction. The prediction accuracy of phenotypic values was largely related to the heritability of the traits. The size of training population increased the accuracy of predictions. Using 122 accessions and 5995 single nucleotide polymorphisms (SNPs) was the optimal condition. The density of markers and their numbers also affected the accuracy of the prediction. Using 2313 SNP markers distributed 0.1 cM or more apart from each other reduced the accuracy of prediction, and no gain in prediction accuracy was found when more markers were used in the model. Additionally, the more accessions were related, the more accurate were the predictions. Finally, the structure of the population negatively affected the prediction accuracy. In conclusion, the results obtained by cross-validation illustrated the effect of several parameters on the accuracy of prediction and revealed the potential of genomic selection in tomato breeding programs.


Genomic selection Cross-validation SNP Tomato Metabolomics Fruit quality 



We gratefully acknowledge the support for JD from the Embassy of France in Thailand in Junior Research Fellowship Program 2014. The INRA SelGen Méta-programme also funded this work ( The authors are indebted to Yolande Carretero and Renaud Duboscq from INRA UR1052 who provided the biological material and performed the molecular work required. Finally, we would like to thank David Cros (CIRAD, Montpellier, France) for his help and advice on our work, as well as Marie Christine Le Paslier and Dominque Brunel from INRA-EPGV for their help with the SNP genotyping.

Authors’ contributions

MC and CS designed the study. JD and CS analyzed the data, and JD, MC, and CS wrote the manuscript. All authors read and approved the final version.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11032_2016_453_MOESM1_ESM.xlsx (166 kb)
Supplementary material 1 (XLSX 166 kb)
11032_2016_453_MOESM2_ESM.docx (794 kb)
Supplementary material 2 (DOCX 794 kb)


  1. Aflitos S, Schijlen E, de Jong H, de Ridder D, Smit S, Finkers R, Wang J, Zhang G, Li N, Mao L, Bakker F, Dirks R, Breit T, Gravendeel B, Huits H, Struss D, Swanson-Wagner R, van Leeuwen H, van Ham R, Fito L, Guignier L, Sevilla M, Ellul P, Ganko E, Kapur A, Reclus E, de Geus B, van de Geest H, Te Lintel Hekkert B, van Haarst J, Smits L, Koops A, Sanchez-Perez G, van Heusden A, Visser R, Quan Z, Min J, Liao L, Wang X, Wang G, Yue Z, Yang X, Xu N, Schranz E, Smets E, Vos R, Rauwerda J, Ursem R, Schuit C, Kerns M, vanden Berg J, Vriezen W, Janssen A, Datema E, Jahrman T, Moquet F, Bonnet J, Peters S (2014) Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J 80:136–148Google Scholar
  2. Asoro FG, Newell MA, Beavis WD, Scott MP, Jannink JL (2011) Accuracy and training population design for genomic selection on quantitative traits in elite North American oats. Plant Genome 4:132–144CrossRefGoogle Scholar
  3. Bauchet G, Munos S, Sauvage C, Bonnet J, Grivet L, Causse M (2014) Genes involved in floral meristem in tomato exhibit drastically reduced genetic diversity and signature of selection. BMC Plant Biol 14:279. doi: 10.1186/s12870-014-0279-2 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Beaulieu J, Doerksen T, Clément S, MacKay J, Bousquet J (2014) Accuracy of genomic selection models in a large population of open-pollinated families in white spruce. Heredity 113:343–352CrossRefPubMedPubMedCentralGoogle Scholar
  5. Beyene Y, Semagn K, Mugo S, Tarekegne A, Babu B, Meisel B, Sehabiague P, Makumbi D, Magorokosho C, Oikeh S, Gakunga J, Vargas M, Olsen M, Prasanna B, Marianne Crossa J (2015) Genetic gains in grain yield through genomic selection in eight bi-parental maize populations under drought stress. Crop Sci 55:154–163CrossRefGoogle Scholar
  6. Blanc G, Charcosset A, Veyrieras JB, Gallais A, Moreau L (2008) Marker-assisted selection efficiency in multiple connected populations: a simulation study based on the results of a QTL detection experiment in maize. Euphytica 161:71–84CrossRefGoogle Scholar
  7. Blanca J, Cañizares J, Cordero L, Pascual L, Diez M, Nuez F (2012) Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PLoS One 7:e48198. doi: 10.1371/journal.pone.0048198 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Blanca J, Montero-Pau J, Sauvage C, Bauchet G, Illa E, Díez MJ, Francis D, Causse M, van der Knaap E, Cañizares J (2015) Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics 16:257. doi: 10.1186/s12864-015-1444-1 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Calus M, De Roos A, Veerkamp R (2008) Accuracy of genomic selection using different methods to define haplotypes. Genetics 178:553–561CrossRefPubMedPubMedCentralGoogle Scholar
  10. Causse M, Saliba-Colombani V, Lecomte L, Duffé P, Rousselle P, Buret M (2002) QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J Exp Bot 53:2089–2098CrossRefPubMedGoogle Scholar
  11. Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55:1671–1685CrossRefPubMedGoogle Scholar
  12. Cros D, Denis M, Sánchez L, Cochard B, Flori A, Durand-Gasselin T, Nouy B, Omoré A, Pomiès V, Riou V, Suryana E, Bouvet JM (2014) Genomic selection prediction accuracy in a perennial crop: case study of oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 128:397–410CrossRefPubMedGoogle Scholar
  13. Crossa J, Beyene Y, Kassa S, Perez P, Hickey JM, Chen C, de los Campos G, Burgueno J, Windhausen VS, Buckler E, Jannink JL, Lopez Cruz MA, Babu R (2013) Genomic prediction in maize breeding populations with genotyping-by-sequencing. G3 G3(3):1903–1926CrossRefGoogle Scholar
  14. Daetwyler HD, Calus MPL, Pong-Wong R, de los Campos G, Hickey JM (2013) Genomic prediction in animals and plants: simulation of data, validation, reporting, and benchmarking. Genetics 193:347–365CrossRefPubMedPubMedCentralGoogle Scholar
  15. El-Dien OG, Ratcliffe B, Klapste J, Chen C, Porth I, El-KAssaby Y (2015) Prediction accuracies for growth and wood attributes of interior spruce in space using genotyping-by-sequencing. BMC Genomics 1–16(13):370CrossRefGoogle Scholar
  16. Endelman JB (2011) Ridge regression and other kernels for genomic selection with R package rrBLUP. Plant Genome 4:250–255CrossRefGoogle Scholar
  17. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  18. Falush D, Stephens M, Pritchard J (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedPubMedCentralGoogle Scholar
  19. Frary A, Nesbitt T, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert K, Tanksley S (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88CrossRefPubMedGoogle Scholar
  20. Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 97:4718–4723CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gianola D, Okut H, Weigel K, Rosa G (2011) Predicting complex quantitative traits with Bayesian neural networks: a case study with Jersey cows and wheat. BMC Genet 12:87. doi: 10.1186/1471-2156-12-87 CrossRefPubMedPubMedCentralGoogle Scholar
  22. González-Camacho J, de los Campos G, Pérez P, Gianola D, Cairns J, Mahuku G, Raman B, Crossa J (2012) Genome-enabled prediction of genetic values using radial basis function neural networks. Theor Appl Genet 125:759–771CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gouy M, Rousselle Y, Bastianelli D, Lecomte P, Bonnal L, Roques D, Efile JC, Rocher S, Daugrois L, Toubi L, Nabeneza S, Hervouet C, Telismart H, Denis M, Thong-Chane A, Glaszmann JC, Hoarau JY, Nibouche S, Costet L (2013) Experimental assessment of the accuracy of genomic selection in sugarcane. Theor Appl Genet 126:2575–2586CrossRefPubMedGoogle Scholar
  24. Habier D, Fernando RL, Dekkers JCM (2007) The impact of genetic relationship information on genome-assisted breeding values. Genetics 177:2389–2397PubMedPubMedCentralGoogle Scholar
  25. Habier D, Tetens J, Seefried F, Lichtner P, Thaller G (2010) The impact of genetic relationship information on genomic breeding values in German Holstein cattle. Genet Sel Evol 42:5. doi: 10.1186/1297-9686-42-5 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hamilton J, Buell C (2012) Advances in plant genome sequencing. Plant J 70:177–190CrossRefPubMedGoogle Scholar
  27. Hayes B, Bowman P, Chamberlain A, Goddard M (2009) Genomic selection in dairy cattle: progress and challenges. J Dairy Sci 92:433–443CrossRefPubMedGoogle Scholar
  28. Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12CrossRefGoogle Scholar
  29. Heslot N, Yang HP, Sorrells ME, Jannink JL (2012) Genomic selection in plant breeding: a comparison of models. Crop Sci 52:146–160CrossRefGoogle Scholar
  30. Hickey JM, Gorjanc G (2012) Simulated data for genomic selection and genome-wide association studies using a combination of coalescent and gene drop methods. G3 2:425–427. doi: 10.1534/g3.111.001297/-/DC1 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hirakawa H, Shirasawa K, Miyatake K, Nunome T, Negoro S, Ohyama A, Yamaguchi H, Sato S, Isobe S, Tabata S, Fukuoka H (2014) Draft genome sequence of eggplant (Solanum melongena L.): the representative Solanum species indigenous to the old world. DNA Res 21(6):649–660CrossRefPubMedPubMedCentralGoogle Scholar
  32. Howard R, Carriquiry AL, Beavis WD (2014) Parametric and nonparametric statistical methods for genomic selection of traits with additive and epistatic genetic architectures. G3 4:1027–1046CrossRefPubMedPubMedCentralGoogle Scholar
  33. Isidro J, Jannink J, Akdemir D, Poland J, Heslot N, Sorrells M (2015) Training set optimization under population structure in genomic selection. Theor Appl Genet 128:145–158CrossRefPubMedPubMedCentralGoogle Scholar
  34. Jonas E, de Koning D-J (2013) Does genomic selection have a future in plant breeding? Trends Biotechnol 31:497–504CrossRefPubMedGoogle Scholar
  35. Jones D, Thomas C, Hammondkosack K, Balintkurti P, Jones J (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789–793CrossRefPubMedGoogle Scholar
  36. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kumar S, Chagné D, Bink MCAM, Volz RK, Whitworth C, Carlisle C (2012) Genomic selection for fruit quality traits in apple (Malus × domestica Borkh.). PLoS One 7:e36674. doi: 10.1371/journal.pone.0036674 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lecomte L, Duffé P, Buret M, Servin B, Hospital F, Causse M (2004) Marker-assisted introgression of 5 QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet 109:658–668CrossRefPubMedGoogle Scholar
  39. Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, Zhang Z, Lun Y, Li S, Wang X, Huang Z, Li J, Zhang C, Wang T, Zhang Y, Wang A, Zhang Y, Lin K, Li C, Xiong G, Xue Y, Mazzucato A, Causse M, Fei Z, Giovannoni JJ, Chetelat RT, Zamir D, Stadler T, Li J, Ye Z, Du Y, Huang S (2014) Genomic analyses provide insights into the history of tomato breeding. Nat Genet 46:1220–1226CrossRefPubMedGoogle Scholar
  40. Lorenz A, Smith K, Jannink J (2012) Potential and optimization of genomic selection for Fusarium head blight resistance in six-row barley. Crop Sci 52:1609–1621CrossRefGoogle Scholar
  41. Maltecca C, Kristen ParkerKL, Cassady JP (2012) Application of multiple shrinkage methods to genomic predictions. J Anim Sci 90:1777–1787CrossRefPubMedGoogle Scholar
  42. Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TFC, McCarroll SA, Visscher PM (2009) Finding the missing heritability of complex diseases. Nature 461:747–753CrossRefPubMedPubMedCentralGoogle Scholar
  43. Martin G, Brommonschenkel S, Chunwongse J, Frary A, Ganal M, Spivey R, Wu T, Earle E, Tanksley S (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436CrossRefPubMedGoogle Scholar
  44. Meuwissen T (2007) Genomic selection: marker assisted selection on a genome wide scale. J Anim Breed Genet 124:321–322CrossRefPubMedGoogle Scholar
  45. Meuwissen T, Hayes B, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829PubMedPubMedCentralGoogle Scholar
  46. Meuwissen T, Hayes B, Goddard M (2013) Accelerating improvement of livestock with genomic selection. Annu Rev Anim Biosci 1:221–237CrossRefPubMedGoogle Scholar
  47. Michael T, VanBuren R (2015) Progress, challenges and the future of crop genomes. Curr Opin Plant Biol 24:71–81CrossRefPubMedGoogle Scholar
  48. Muños S, Ranc N, Botton E, Bérard A, Rolland S, Duffé P, Carretero Y, Le Paslier M, Delalande C, Bouzayen M, Brunel D, Causse M (2011) Increase in tomato locule number is controlled by two single-nucleotide polymorphisms located near WUSCHEL. Plant Physiol 156:2244–2254CrossRefPubMedPubMedCentralGoogle Scholar
  49. Owens B, Lipka A, Magallanes-Lundback M, Tiede T, Diepenbrock C, Kandianis C, Kim E, Cepela J, Mateos-Hernandez M, Buell C, Buckler E, DellaPenna D, Gore M, Rocheford T (2014) A foundation for provitamin a biofortification of maize: genome-wide association and genomic prediction models of carotenoid levels. Genetics 198:1699–1716CrossRefPubMedPubMedCentralGoogle Scholar
  50. Pascual L, Desplat N, Huang BE, Desgroux A, Bruguier L, Bouchet J-P, Le QH, Chauchard B, Verschave P, Causse M (2014) Potential of a tomato MAGIC population to decipher the genetic control of quantitative traits and detect causal variants in the resequencing era. Plant Biotechnol J. doi: 10.1111/pbi.12282 PubMedGoogle Scholar
  51. Pascual L, Albert E, Sauvage C, Duangjit J, Bouchet J, Bitton F, Desplat N, Brunel D, Paslier M, Ranc N, Bruguier L, Chauchard B, Verschave P, Causse M (2016) Dissecting quantitative trait variation in the resequencing era: complementarity of bi-parental, multi-parental and association panels. Plant Sci 242:120–130CrossRefPubMedGoogle Scholar
  52. Pérez P, de los Campos G (2014) Genome-wide regression and prediction with the BGLR statistical package. Genetics 198(2):483–495CrossRefPubMedPubMedCentralGoogle Scholar
  53. Price AH (2006) Believe it or not, QTLs are accurate! Trends Plant Sci 11:213–216CrossRefPubMedGoogle Scholar
  54. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira M, Bender D, Maller J, Sklar P, de Bakker P, Daly M, Sham P (2007) PLINK: a toolset for whole-genome association and population-based linkage analysis. Am J Hum Genet 81:559–575CrossRefPubMedPubMedCentralGoogle Scholar
  55. Qin C et al (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci USA 111:5135–5140CrossRefPubMedPubMedCentralGoogle Scholar
  56. Ranc N, Munos S, Xu J, LePaslier MC, Chauveau A, Bounon R, Rolland S, Bouchet JP, Brunel D, Causse M (2012) Genome-wide association mapping in tomato (Solanum lycopersicum) is possible using genome admixture of Solanum lycopersicum var. cerasiforme. G3 2:853–864CrossRefPubMedPubMedCentralGoogle Scholar
  57. R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN: 3-900051-07-0,
  58. Resende JM, Muñoz P, Resende M, Garrick D, Fernando R, Davis J, Jokela E, Martin T, Peter G, Kirst M (2012) Accuracy of genomic selection methods in a standard data set of Loblolly Pine (Pinus taeda L.). Genetics 190:1503–1510CrossRefPubMedPubMedCentralGoogle Scholar
  59. Rincent R, Laloë D, Nicolas S, Altmann T, Brunel D, Revilla P, Rodríguez V, Moreno-Gonzalez J, Melchinger A, Bauer E, Schoen C, Meyer N, Giauffret C, Bauland C, Jamin P, Laborde J, Monod H, Flament P, Charcosset A, Moreau L (2012) Maximizing the reliability of genomic selection by optimizing the calibration set of reference individuals: comparison of methods in two diverse groups of maize inbreds (Zea mays L.). Genetics 192:715–728CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ruggieri V, Francese G, Sacco A, D’Alessandro A, Rigano MM, Parisi M, Milone M, Cardi T, Mennella G, Barone A (2014) An association mapping approach to identify favourable alleles for tomato fruit quality breeding. BMC Plant Biol 14:337. doi: 10.1186/s12870-014-0337-9 CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sacco A, Ruggieri V, Parisi M, Festa G, Rigano MM, Picarella ME, Mazzucato A, Barone A (2015) Exploring a tomato landraces collection for fruit-related traits by the aid of a high-throughput genomic platform. PLoS One. doi: 10.1371/journal.pone.0137139 Google Scholar
  62. Sato S, Tabata S, Hirakawa H, Asamizu E, Shirasawa K, Isobe S, Kaneko T, Nakamura Y, Shibata D, Aoki K, Egholm M, Knight J, Bogden R, Li C, Shuang Y, Xu X, Pan S, Cheng S, Liu X, Ren Y, Wang J, Albiero A, Dal Pero F, Todesco S, Van Eck J, Buels RM, Bombarely A, Gosselin JR, Huang M, Leto JA, Menda N, Strickler S, Mao L, Gao S, Tecle IY, York T, Zheng Y, Vrebalov JT, Lee J, Zhong S, Mueller LA, Stiekema WJ, Ribeca P, Alioto T, Yang W, Huang S, Du Y, Zhang Z, Gao J, Guo Y, Wang X, Li Y, He J, Li C, Cheng Z, Zuo J, Ren J, Zhao J, Yan L, Jiang H, Wang B, Li H, Li Z, Fu F, Chen B, Han B, Feng Q, Fan D, Wang Y, Ling H, Xue Y, Ware D, McCombie WR, Lippman ZB, Chia JM, Jiang K, Pasternak S, Gelley L, Kramer M, Anderson LK, Chang SB, Royer SM, Shearer LA, Stack SM, Rose JKC, Xu Y, Eannetta N, Matas AJ, McQuinn R, Tanksley SD, Camara F, Guigo R, Rombauts S, Fawcett J, Van de Peer Y, Zamir D, Liang C, Spannagl M, Gundlach H, Bruggmann R et al (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641CrossRefGoogle Scholar
  63. Sauvage C, Segura V, Bauchet G, Stevens R, Phuc Thi D, Nikoloski Z, Fernie AR, Causse M (2014) Genome-wide association in tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiol 165:1120–1132CrossRefPubMedPubMedCentralGoogle Scholar
  64. Sim SC, Durstewitz G, Plieske J, Wieseke R, Ganal MW, Van Deynze A, Hamilton JP, Buell CR, Causse M, Wijeratne S, Francis DM (2012a) Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS One 7:e40563. doi: 10.1371/journal.pone.0040563 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Sim SC, Van DeynzeA, Stoffel K, Douches DS, Zarka D, Ganal MW, Chetelat RT, Hutton SF, Scott JW, Gardner RG, Panthee DR, Mutschler M, Myers JR, Francis DM (2012b) High-density SNP genotyping of tomato (Solanum lycopersicum L.) reveals patterns of genetic variation due to breeding. PLoS One 7:e45520. doi: 10.1371/journal.pone.0045520 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Solberg TR, Sonesson AK, Woolliams JA, Meuwissen TH (2008) Genomic selection using different marker types and densities. J Anim Sci 86:2447–2454CrossRefPubMedGoogle Scholar
  67. Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redona E, Atlin G, Jannink JL, McCouch S (2015) Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet 11:e1004982CrossRefPubMedPubMedCentralGoogle Scholar
  68. Storlie E, Charmet G (2013) Genomic selection accuracy using historical data generated in a wheat breeding program. Plant Genome. doi: 10.3835/plantgenome2013.01.0001 Google Scholar
  69. Tanksley SD, Fulton TM (2007) Dissecting quantitative trait variation-examples from the tomato. Euphytica 154:365–370CrossRefGoogle Scholar
  70. Tanksley S, Ganal M, Prince J, de-Vicente M, Bonierbale M, Broun P, Fulton T, Giovannoni J, Grandillo S, Martin G, Messeguer R, Miller J, Miller L, Paterson A, Pineda O, Roder M, Wing R, Wu W, Young N (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160PubMedPubMedCentralGoogle Scholar
  71. Wang Y, Tang X, Cheng Z, Mueller L, Giovannoni J, Tanksley S (2006) Euchromatin and pericentromeric heterochromatin: comparative composition in the tomato genome. Genetics 172:2529–2540CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wang Y, Mette M, Miedaner T, Gottwald M, Wilde P, Reif J, Zhao Y (2014) The accuracy of prediction of genomic selection in elite hybrid rye populations surpasses the accuracy of marker-assisted selection and is equally augmented by multiple field evaluation locations and test years. BMC Genomics 15:556. doi: 10.1186/1471-2164-15-556 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Wimmer V, Lehermeier C, Albrecht T, Auinger H, Wang Y, Schön C (2013) Genome-wide prediction of traits with different genetic architecture through efficient variable selection. Genetics 195:573–587CrossRefPubMedPubMedCentralGoogle Scholar
  74. Windhausen VS, Atlin GN, Hickey JM, Crossa J, Jannink JL, Sorrells ME, Raman B, Cairns JE, Tarekegne A, Semagn K, Beyene Y, Grudloyma P, Technow F, Riedelsheimer C, Melchinger AE (2012) Effectiveness of genomic prediction of maize hybrid performance in different breeding populations and environments. G3 2:1427–1436. doi: 10.1534/g3.112.003699 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Würschum T, Reif J, Kraft T, Janssen G, Zhao Y (2013) Genomic selection in sugar beet breeding populations. BMC Genet 14:1–8. doi: 10.1186/1471-2156-14-85 CrossRefGoogle Scholar
  76. Xu X, Pan S, Cheng S, Zhang B, Mu D, Ni P, Zhang G, Yang S, Li R, Wang J, Orjeda G, Guzman F, Torres M, Lozano R, Ponce O, Martinez D, De la Cruz G, Chakrabarti SK, Patil VU, Skryabin KG, Kuznetsov BB, Ravin NV, Kolganova TV, Beletsky AV, Mardanov AV, Di Genova A, Bolser DM, Martin DMA, Li G, Yang Y, Kuang H, Hu Q, Xiong X, Bishop GJ, Sagredo B, Mejia N, Zagorski W, Gromadka R, Gawor J, Szczesny P, Huang S, Zhang Z, Liang C, He J, Li Y, He Y, Xu J, Zhang Y, Xie B, Du Y, Qu D, Bonierbale M, Ghislain M, del Rosario HerreraM, Giuliano G, Pietrella M, Perrotta G, Facella P, O’Brien K, Feingold SE, Barreiro LE, Massa GA, Diambra L, Whitty BR, Vaillancourt B, Lin H, Massa A, Geoffroy M, Lundback S, DellaPenna D, Buell CR, Sharma SK, Marshall DF, Waugh R, Bryan GJ, Destefanis M, Nagy I, Milbourne D, Thomson SJ, Fiers M, Jacobs JME, Nielsen KL, Sonderkaer M, Iovene M, Torres GA, Jiang J, Veilleux RE, Bachem CWB, de Boer J, Borm T, Kloosterman B, van Eck H, Datema E, Hekkert BTL, Goverse A, van Ham RCHJ, Visser RGF, Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195. doi: 10.1038/nature10158 CrossRefPubMedGoogle Scholar
  77. Xu Y, Lu Y, Xie C, Gao S, Wan J, Prasanna B (2012) Whole-genome strategies for marker-assisted plant breeding. Mol Breed 29:833–854CrossRefGoogle Scholar
  78. Xu J, Ranc N, Munos S, Rolland S, Bouchet JP, Desplat N, Le Paslier MC, Liang Y, Brunel D, Causse M (2013) Phenotypic diversity and association mapping for fruit quality traits in cultivated tomato and related species. Theor Appl Genet 126:567–581CrossRefPubMedGoogle Scholar
  79. Zhang X, Pérez-Rodríguez P, Semagn K, Beyene Y, Babu R, López-Cruz M, Vicente F, Olsen M, Buckler E, Jannink J, Prasanna B, Crossa J (2015) Genomic prediction in biparental tropical maize populations in water-stressed and well-watered environments using low-density and GBS SNPs. Heredity 114:291–299CrossRefPubMedGoogle Scholar
  80. Zhu C, Gore M, Buckler ES, Yu J (2008) Status and prospects of association mapping in plants. Plant Genome 1:5–20CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Janejira Duangjit
    • 1
  • Mathilde Causse
    • 2
  • Christopher Sauvage
    • 2
  1. 1.Department of Horticulture, Faculty of AgricultureKasetsart UniversityBangkokThailand
  2. 2.INRA, UR1052 GAFL, Génétique et Amélioration des Fruits et LégumesMontfavet CedexFrance

Personalised recommendations