Skip to main content
Log in

Construction of a SNP and SSR linkage map in autotetraploid blueberry using genotyping by sequencing

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The construction of the first genetic map in autotetraploid blueberry has been made possible by the development of new SNP markers developed using genotyping by sequencing in a mapping population created from a cross between two key highbush blueberry cultivars, Draper × Jewel (Vaccinium corymbosum). The novel SNP markers were supplemented with existing SSR markers to enable the alignment of parental maps.  In total, 1794 single nucleotide polymorphic (SNP) markers and 233 simple sequence repeat (SSR) markers exhibited segregation patterns consistent with a random chromosomal segregation model for meiosis in an autotetraploid. Of these, 700 SNPs and 85 SSRs were utilized for construction of the ‘Draper’ genetic map, and 450 SNPs and 86 SSRs for the ‘Jewel’ map.  The ‘Draper’ map comprises 12  linkage groups (LG), associated with the haploid chromosome number for blueberry, and totals 1621 cM while the ‘Jewel’ map comprises 20 linkage groups totalling 1610 cM. Tentative alignments of the two parental maps have been made on the basis of shared SSR alleles and linkages to double-simplex markers segregating in both parents. Tentative alignments of the two parental maps have been made on the basis of shared SSR alleles and linkages to double-simplex markers segregating in both parents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Al-Janabi SM,  Honeycutt RJ,  McClelland M, Sobral BWS (1992) A genetic linkage map of Saccharum spontaneum L. ‘SES 208’. Genetics 134:1249–1260

    Google Scholar 

  • Barba P, Cadle-Davidson L, Harriman J, Glaubitz JC, Brooks S, Hyma K, Reisch B (2014) Grapevine powdery mildew resistance and susceptibility loci identified on a high-resolution SNP map. Theor Appl Genet 127:73–84

    Article  CAS  PubMed  Google Scholar 

  • Bielenberg DG, Rau B, Fan S, Gasic K, Abbott A.G, Reighard GL, Okie WR, Wells CE (2015) Genotyping by sequencing for SNP-based linkage map construction and QTL analysis of chilling requirement and bloom date in peach [Prunus persica (L.) Batsch]. PLoS ONE 10(10):e0139406

    Article  PubMed  PubMed Central  Google Scholar 

  • Boches PS, Bassil NV, Rowland LJ (2005) Microsatellite markers for Vaccinium from EST and genomic libraries. Mol Ecol Notes 5:657–660

    Article  CAS  Google Scholar 

  • Bradshaw JE, Hackett CA, Pande B, Waugh R, Bryan GJ (2008) QTL mapping of yield, agronomic and quality traits in tetraploid potato (Solanum tuberosum subsp. tuberosum). Theor Appl Genet 116:193–211

    Article  PubMed  Google Scholar 

  • Brazelton C (2013) World Acreage and Production. North American Blueberry Council. http://www.chilealimentos.com/2013/phocadownload/Aprocesados_congelados/nabc_2012-world-blueberry-acreage-production.pdf. Accessed 9 Feb 2015

  • Bushakra JM, Bryant DW, Dossett M, Vining KJ, Van Buren R, Gilmore BS, Lee J, Mockler TC, Finn CE, Bassil NV (2015) A genetic linkage map of black raspberry (Rubus occidentalis) and the mapping of Ag4 conferring resistance to the aphid Amphorophora agathonica. Theor Appl Genet 128(8):1631–1646

    PubMed  PubMed Central  Google Scholar 

  • Butruille DV, Boiteux LS (2000) Selection–mutation balance in polysomic tetraploids: impact of double reduction and gametophytic selection on the frequency of subchromosomal localization of deleterious mutations. Proc Natl Acad Sci USA 97:6608–6613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camp WH (1945) The North American blueberries with notes on other groups of Vacciniaceae. Brittonia 5:203–275

    Article  Google Scholar 

  • Castro P, Stafne ET, Clark JR, Lewers KS (2013) Genetic map of the primocane-fruiting and thornless traits of tetraploid blackberry. Theor Appl Genet 126(10):2521–2532

    Article  CAS  PubMed  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Dhanaraj AL, Slovin JP, Rowland LJ (2004) Analysis of gene expression associated with cold acclimation in blueberry floral buds using expressed sequence tags. Plant Sci 166:863–872

    Article  CAS  Google Scholar 

  • Die JV, Rowland LJ (2013) Superior cross-species reference genes: a blueberry case study. PLoS ONE 8(9):e73354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gallais A (2003) Quantitative genetics and breeding methods in autopolyploid plants. INRA Editions, Paris

    Google Scholar 

  • Gar O, Sargent DJ, Tsai CJ, Pleban T, Shalev G, Byrne DH, Zamir D (2011) An Autotetraploid Linkage Map of Rose (Rosa hybrida) Validated Using the Strawberry (Fragaria vesca) Genome Sequence. PloS ONE 6(5):e20463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner KM, Brown P, Cooke TF, Cann S, Costa F, Bustamante C, Velasco R, Troggio M, Myles S (2014) Fast and cost-effective genetic mapping in apple using next-generation sequencing. G3: Genes|Genomes|Genet 4(9):1681–1687

    Article  PubMed  PubMed Central  Google Scholar 

  • Gilmore BS, Bassil NV, Hummer KE (2011) DNA extraction protocols from dormant buds of twelve woody plant genera. J Am Pomol Soc 65:201–207

    Google Scholar 

  • Guajardo V, Solis S, Sagredo B, Gainza F, Munoz C, Gasic K, Hinrichsen P (2015) Construction of high density sweet cherry (Prunus avium L.) linkage maps using microsatellite markers and SNPs detected by genotyping-by-sequencing (GBS). PLoS ONE 10(5):e0127750

    Article  PubMed  PubMed Central  Google Scholar 

  • Hackett CA, Luo ZW (2003) TetraploidMap: construction of a linkage map in autotetraploid species. J Hered 94:358–359

    Article  CAS  PubMed  Google Scholar 

  • Hackett CA, Bradshaw JE, Meyer RC, McNicol JW, Milbourne D, Waugh R (1998) Linkage analysis in autotetraploid species: a simulation study. Genet Res Camp 71:143–154

    Article  CAS  Google Scholar 

  • Hackett CA, Bradshaw JE, McNicol JW (2001) Interval mapping of QTLs in autotetraploid species. Genetics 159:1819–1832

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hackett CA, Milne I, Bradshaw JE, Luo ZW (2007) TetraploidMap for Windows: linkage map construction and QTL mapping in autotetraploid species. J Hered 98:727–729

    Article  CAS  PubMed  Google Scholar 

  • Hangun-Balkir Y, McKenney L (2012) Determination of antioxidant activities of berries and resveratrol. Green Chem Lett Rev 5(2):147–153

    Article  CAS  Google Scholar 

  • Johnson SA, Arjmandi BH (2013) Evidence for anti-cancer properties of blueberries: a mini review. Anticancer Agents Med Chem 13(8):1142–1148

    Article  CAS  PubMed  Google Scholar 

  • Julier B, Flajoulot S, Barre P, Cardinet G, Santoni S, Huguet T, Huyghe C (2003) Construction of two genetic linkage maps in cultivated tetraploidalfalfa (Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biol 3:9

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalt W, Joseph JA, Shukitt-Hale B (2007) Blueberries and human health. A review of the current research. J Am Pomol Soc 61:151–160

    Google Scholar 

  • Lu F, Lipka AE, Glaubitz J, Elshire R, Cherney JH, Casler MD, Buckler ES, Costich DE (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet 9(1):e1003215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo ZW, Hackett CA, Bradshaw JE, McNicol JW, Milbourne D (2000) Predicting parental genotypes and gene segregation for tetrasomic inheritance. Theor Appl Genet 100:1067–1073

    Article  Google Scholar 

  • Luo ZW, Hackett CA, Bradshaw JE, McNicol JW, Milbourne D (2001) Construction of a genetic linkage map in tetraploid species using molecular markers. Genetics 157:1369–1385

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCormack D, McFadden D (2013) A review of Pterostilbene antioxidant activity and disease modification. Oxid med Cell Longev 2013:575482

    Article  PubMed  PubMed Central  Google Scholar 

  • Megalos BS, Ballington JR (1988) Unreduced pollen frequencies versus hybrid production in diploid- tetraploid Vaccinium crosses. Euphytica 39:271–278

    Article  Google Scholar 

  • Meyer RC, Milbourne D, Hackett CA, Bradshaw JE, McNicol JW, Waugh R (1998) Linkage analysis in tetraploid potato and association of markers with quantitative resistance to late blight (Phytophthora infestans). Mol Gen Genet 259:150–160

    Article  CAS  PubMed  Google Scholar 

  • Nielsen R, Paul JS, Alberechtsen A, Song YS (2011) Genotype and SNP calling from next generation sequencing data. Nat Rev Genet 12:443–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu L, Hancock JF, Whallon JH (1998) Evolution in an autopolyploid group displaying predominantly bivalent pairing at meiosis: genomic similarity of diploid Vaccinium darrowii and autotetraploid Vaccinium corymbosum (Ericaceae). Am J Bot 85:698–703

    Article  CAS  PubMed  Google Scholar 

  • Rimando AM, Kalt W, Magee JB, Dewey J, Ballington JR (2004) Resveratrol, pterostilbene, and piceatannol in Vaccinium berries. J Agric Food Chem 52(15):4713–4719

    Article  CAS  PubMed  Google Scholar 

  • Rocher S, Jean M, Castonguay Belzile F (2015) Validation of genotyping by sequencing analysis in populations of tetraploid Alfalfa by 454 sequencing. PLoS ONE 10(6):e0131918

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Mateos A, Rendeiro C, Bergillos-Meca T, Tabatabaee S, George TW, Heiss C, Spencer JPE (2013) Intake and time dependence of blueberry flavonoid-induced improvements in vascular function: a randomized, controlled, double-blind, crossover intervention study with mechanistic insights into biological activity. Am J Clin Nutr 98:1179–1191

    Article  CAS  PubMed  Google Scholar 

  • Rowland LJ, Mehra S, Dhanaraj AL, Ogden EL, Arora A (2003) Identification of molecular markers associated with cold tolerance in blueberry. Acta Hort 625:59–69

    Article  CAS  Google Scholar 

  • Rowland LJ, Dhanaraj AL, Naik D, Alkharouf N, Matthews B, Arora R (2008) Study of cold tolerance in blueberry using EST libraries, cDNA microarrays, and subtractive hybridization. HortSci 43:1975–1981

    Google Scholar 

  • Rowland LJ, Bell D, Alkharouf N, Bassil N, Drummond F, Beers L, Buck E, Finn C, Graham J, McCallum S, Hancock J, Polashock J, Olmstead J, Main D (2012) Generating genomic tools for blueberry improvement. J Fruit Sci 12:276–287

    Article  Google Scholar 

  • Rowland LJ, Ogden EL, Bassil N, Buck EJ, McCallum S, Graham J, Brown A, Wiedow C, Campbell AM, Haynes KG, Vinyard BT (2014) Construction of a genetic linkage map of an interspecific diploid blueberry population and identification of QTL for chilling requirement and cold hardiness. Mol Breed 34:2033–2048

    Article  CAS  Google Scholar 

  • Russell J, Hackett C, Hedley P, Liu H, Milne L, Bayer M, Marshall D, Jorgensen L, Gordon S, Brennan R (2014) The use of genotyping by sequencing in blackcurrant (Ribes nigrum): developing high-resolution linkage maps in species without reference genome sequences. Mol Breed 33:835–849

    Article  CAS  Google Scholar 

  • Shuelke M (2000) An economic method for the fluorescent labelling of PCR fragments. Nat Am Inc 18:233–234

    Google Scholar 

  • Soltis DE, Soltis PS (1993) Molecular data and the dynamic nature of polyploidy. Crit Rev Plant Sci 12:243–273

    Article  CAS  Google Scholar 

  • Uitdewilligen J, Wolters AM, D’Hoop B, Borm T, Visser R, Eck H (2013) A next generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PLoS ONE 8(5):e62355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Ooijen JW (2006) JoinMap ® 4; Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Ward JA, Bhangoo J, Fernández-Fernández F, Moore P, Swanson JD, Viola R, Velasco R, Bassil N, Weber CA, Sargent DJ (2013) Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation. BMC Genom 14:2

    Article  CAS  Google Scholar 

  • Welch JE (1962) Linkage in autotetraploid maize. Genetics 47:367–396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Winter P, Kahl G (1995) Molecular marker technologies for plant improvement. World J Microbiol Biotechnol 11:438–448

    Article  CAS  PubMed  Google Scholar 

  • Wu KK, Burnquist W, Sorrells ME, Tew TL, Moore PH, Tanskley SD (1992) The detection and estimation of linkage in polyploids using single-dose restriction fragments. Theor Appl Genet 83:294–300

    Article  CAS  PubMed  Google Scholar 

  • Wu R, Gallo-Meager M, Littell RC, Zeng ZB (2001) A general polyploidy model for analyzing gene segregation in outcrossing tetraploid species. Genetics 159:869–882

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded through Horticulture Link (HL0190), and all contributing partners are gratefully acknowledged. Project collaboration with the Specialty Crop Research Initiative-funded project (Grant 2008-51180-04861 entitled ‘Generating genomic tools for blueberry improvement’) has provided valuable access to plant material, genetic resources and advice. Support for this work from the Scottish Government’s Rural and Environment Science and Analytical Services Division (RESAS) is gratefully acknowledged. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the James Hutton Institute or any of the other agencies involved in this research. We thank all reviewers for their comments and Sue Gardiner for assisting in preparation of this ms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan McCallum.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCallum, S., Graham, J., Jorgensen, L. et al. Construction of a SNP and SSR linkage map in autotetraploid blueberry using genotyping by sequencing. Mol Breeding 36, 41 (2016). https://doi.org/10.1007/s11032-016-0443-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0443-5

Keywords

Navigation