Advertisement

Molecular Breeding

, 36:1 | Cite as

TaTGW6-A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat

  • Mamoona Hanif
  • Fengmei Gao
  • Jindong Liu
  • Weie Wen
  • Yingjun Zhang
  • Awais Rasheed
  • Xianchun Xia
  • Zhonghu He
  • Shuanghe Cao
Article

Abstract

The TGW6 gene encodes a novel indole-3-acetic acid-glucose hydrolase and plays a significant role in improving thousand grain weight (TGW) and yield in rice. In the current study, a TGW6 ortholog from bread wheat chromosome 3AL was isolated and designated as TaTGW6-A1. Sequencing and alignment analysis showed that the cloned TaTGW6-A1 consists of a 987-bp intronless open reading frame. Three single-nucleotide polymorphisms (SNPs) were identified between cultivars with higher and lower TGW, forming two haplotypes, TaTGW6-A1a and TaTGW6-A1b. A derived cleaved amplified polymorphic sequence marker, TaTGW6-A1-CAPS, was developed to differentiate the two haplotypes. Linkage analysis using the wheat 90K iSelect SNP array mapped TaTGW6-A1-CAPS at 18 cM from BobWhite_c47304_56 in a RIL population derived from Zhou 8425B/Chinese Spring. A QTL for yield at the TaTGW6-A1 locus explained 17.4 % of the phenotypic variance in average yield over four environments. Association analysis on 242 Chinese and foreign cultivars indicated that TaTGW6-A1 was significantly associated with TGW. The cumulative frequency of the TaTGW6-A1a allele associated with higher TGW was approximately 80 %, indicating that the TaTGW6-A1a allele was positively selected in wheat breeding. In conclusion, TaTGW6-A1 in conjunction with its molecular marker may contribute as a valuable gene in improving yield potential in wheat.

Keywords

TaTGW6-A1 dCAPS marker QTL TGW Yield Triticum aestivum 

Notes

Acknowledgments

This work was supported by Beijing Municipal Science and Technology Project (D151100004415003), National Natural Science Foundation of China (31161140346, 31461143021 and 31571663) and The National High Technology Research and Development Program of China (2012AA101105).

Supplementary material

11032_2015_425_MOESM1_ESM.png (140 kb)
Fig. S1 Alignment of cloned sequences for TaTGW6-A1, TaTGW6-B1, TaTGW6-D1 and AeTGW6. AeTGW 6 is the TGW6 ortholog from Aegilops tauschii. The premature stop codon in TaTGW6-D1 is boxed (PNG 140 kb)
11032_2015_425_MOESM2_ESM.png (107 kb)
Fig. S2 Alignment for amino acid sequences predicted from OsTGW6 and the cloned TaTGW6 genes with putative complete ORFs. Location of the premature stop codon in TaTGW6-D1 is shown by an arrow. The putative complete ORFs of TaTGW6 genes were predicted based on joining cloned sequences and their online reference sequences, IWGSC_CSS_3AL_scaff_4318491, IWGSC_CSS_3B_scaff_10632757 and Aegilops tauschii scaffold 4428 (3D), respectively (ENA: http://www.ebi.ac.uk/ena) (PNG 107 kb)
11032_2015_425_MOESM3_ESM.png (60 kb)
Fig. S3 PCR amplification of CS nulli-tetrasomic lines with the primer set TaTGW6-A1-CAPS-F1, TaTGW6-A1-CAPS-R1. No amplification was observed in CSN3A-T3B and CSN3A-T3D, but other nulli-tetrasomics generated the expected fragment, indicating that the functional marker was located on wheat chromosome 3A. M: DL2000; 1: CSN3A-T3B; 2: CSN3A-T3D; 3: CSN5A-T5B; 4: CSN5A-T5D; 5: CSN1B-T1A; 6: CSN1B-T1D; 7: CSN4B-T4D (PNG 60 kb)
11032_2015_425_MOESM4_ESM.png (151 kb)
Fig. S4 LOD contours obtained by inclusive composite interval mapping for a yield QTL in the Zhou 8425B/Chinese Spring RIL population (PNG 151 kb)
11032_2015_425_MOESM5_ESM.doc (539 kb)
Table S1 Supplementary material 5 (DOC 539 kb)
11032_2015_425_MOESM6_ESM.doc (17 kb)
Table S2 Supplementary material 6 (DOC 17 kb)
11032_2015_425_MOESM7_ESM.doc (40 kb)
Table S3 Supplementary material 7 (DOC 40 kb)

References

  1. Ali ML, Baenziger PS, Ajlouni ZA, Campbell BT, Gill KS, Eskridge KM, Mujeeb-Kazi A, Dweikat I (2011) Mapping QTL for agronomic traits on wheat chromosome 3A and a comparison of recombinant inbred chromosome line populations. Crop Sci 51:553–566CrossRefGoogle Scholar
  2. Bagge M, Xia X, Lubberstedt T (2007) Functional markers in wheat. Curr Opin Plant Biol 10:211–216CrossRefPubMedGoogle Scholar
  3. Bevan MW, Uauy C (2013) Genomics reveals new landscapes for crop improvement. Genome Biol 14:206PubMedCentralCrossRefPubMedGoogle Scholar
  4. Chang J, Zhang J, Mao X, Li A, Jia J, Jing R (2013) Polymorphism of TaSAP1-A1 and its association with agronomic traits in wheat. Planta 237:1495–1508CrossRefPubMedGoogle Scholar
  5. Curtis T, Halford NG (2014) Food security: the challenge of increasing wheat yield and the importance of not compromising food safety. Appl Biol 164:354–372CrossRefGoogle Scholar
  6. Dholakia BB, Ammiraju JSS, Singh H, Lagu MD, Röder MS, Rao VS, Dhaliwal HS, Ranjekar PK, Gupta VS, Weber WE (2003) Molecular marker analysis of kernel size and shape in bread wheat. Plant Breed 122:392–395CrossRefGoogle Scholar
  7. Dong L, Wang F, Liu T, Dong Z, Li A, Jing R, Mao L, Li Y, Liu X, Zhang K, Wang D (2014) Natural variation of TaGASR7-A1 affects grain length in common wheat under multiple cultivation conditions. Mol Breed 34:937–947CrossRefGoogle Scholar
  8. Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snape JW (2010) A genetic framework for grain size and shape variation in wheat. Plant Cell 22:1046–1056PubMedCentralCrossRefPubMedGoogle Scholar
  9. Grossmann K (2010) Auxin herbicides: current status of mechanism and mode of action. Pest Manag Sci 66:113–120PubMedGoogle Scholar
  10. Guo Y, Sun J, Zhang G, Wang Y, Kong F, Zhao Y, Li S (2013) Haplotype, molecular marker and phenotype effects associated with mineral nutrient and grain size traits of TaGS1a in wheat. Field Crops Res 154:119–125CrossRefGoogle Scholar
  11. Halliday KJ, Martıñez-Garcıá JF, Josse EM (2009) Integration of light and auxin signaling. Cold Spring Harb Perspect Biol 1:1–11CrossRefGoogle Scholar
  12. Huang X, Cöster H, Ganal MW, Röder MS (2003) Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor Appl Genet 106:1379–1389PubMedGoogle Scholar
  13. Ishimaru K, Hirotsu N, Madoka Y, Murakami N, Hara N, Onodera H, Kashiwagi T, Ujiie K, Shimizu B, Onishi A, Miyagawa H, Katoh E (2013) Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet 45:707–713CrossRefPubMedGoogle Scholar
  14. IWGSC-International Wheat Genome Sequencing Consortium (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788CrossRefGoogle Scholar
  15. Jiang Q, Hou J, Hao C, Wang L, Ge H, Dong Y, Zhang X (2010) The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits. Funct Integr Genomics 11:49–61CrossRefPubMedGoogle Scholar
  16. Kosambi DD (1943) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  17. Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374PubMedCentralCrossRefPubMedGoogle Scholar
  18. Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43:1266–1269CrossRefPubMedGoogle Scholar
  19. Liu Y, He Z, Appels R, Xia X (2012) Functional markers in wheat: current status and future prospects. Theor Appl Genet 125:1–10CrossRefPubMedGoogle Scholar
  20. Ma D, Yan J, He Z, Wu L, Xia X (2012) Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Mol Breed 29:43–52CrossRefGoogle Scholar
  21. Mengistu N, Baenziger PS, Eskridge KM, Dweikat I, Wegulo SN, Gill KS, Mujeeb-Kazi A (2012) Validation of QTL for grain yield-related traits on wheat chromosome 3A using recombinant inbred chromosome lines. Crop Sci 52:1622–1632CrossRefGoogle Scholar
  22. Qin L, Hao C, Hou J, Wang Y, Li T, Wang L, Ma Z, Zhang X (2014) Homologous haplotypes, expression, genetic effects and geographic distribution of the wheat yield gene TaGW2. BMC Plant Biol 14:107PubMedCentralCrossRefPubMedGoogle Scholar
  23. Ravel C, Praud S, Murigeux A, Canaguier A, Sapet F, Dufour P, Chalhoub B, Brunel D, Beckert M, Charmet G (2006) Single nucleotide polymorphism frequency in a set of selected lines of bread wheat (Triticum aestivum L.). Genome 49:1131–1139CrossRefPubMedGoogle Scholar
  24. Stein N, Herren G, Keller B (2001) A new DNA extraction method for high-throughput marker analysis in a large-genome species such as Triticum aestivum L. Plant Breed 120:354–356CrossRefGoogle Scholar
  25. Su Z, Hao C, Wang L, Dong Y, Zhang X (2010) Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor Appl Genet 122:211–223CrossRefPubMedGoogle Scholar
  26. Takeda T, Suwa Y, Suzuki M, Kitano M, Ueguchi-Tanaka M, Ashikari M, Matsuoka M, Ueguchi C (2003) The OsTB1 gene negatively regulates lateral branching in rice. Plant J 33:513–520CrossRefPubMedGoogle Scholar
  27. Valluru R, Reynolds PM, Salse J (2014) Genetic and molecular bases of yield-associated traits: a translational biology approach between rice and wheat. Theor Appl Genet 127:1463–1489CrossRefPubMedGoogle Scholar
  28. Wan X, Weng J, Zhai H, Wang J, Lei C, Liu L, Guo T, Jiang L, Su N, Wan J (2008) Quantitative trait loci (QTL) analysis for rice grain width and fine mapping of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5. Genetics 179:2239–2252PubMedCentralCrossRefPubMedGoogle Scholar
  29. Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G, Fu X (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nat Genet 44:950–954CrossRefPubMedGoogle Scholar
  30. Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M, Dvorak J, Morel M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array. Plant Biotechnol J 12:786–796Google Scholar
  31. Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao C, Wang F, Huang H, Fu X (2015a) The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nat Genet 47:949–954CrossRefPubMedGoogle Scholar
  32. Wang Y, Xiong G, Hu J, Jiang L, Yu H, Xu J, Fang Y, Zeng L, Xu E, Xu J, Ye W, Meng X, Liu R, Chen H, Jing Y, Wang Y, Zhu X, Li J, Qian Q (2015b) Copy number variation at the GL7 locus contributes to grain size diversity in rice. Nat Genet 47:944–948CrossRefPubMedGoogle Scholar
  33. Xiao J, Li J, Yuan L, Tanksley SD (1996) Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a sub specific rice cross. Theor Appl Genet 92:230–244CrossRefPubMedGoogle Scholar
  34. Yang Z, Bai Z, Li X, Wang P, Wu Q, Yang L, Li L, Li X (2012) SNP identification and allelic-specific PCR markers development for TaGW2, a gene linked to wheat kernel weight. Theor Appl Genet 125:1057–1068CrossRefPubMedGoogle Scholar
  35. Zhang L, Zhao Y, Gao L, Zhao G, Zhou R, Zhang B, Jia J (2012) TaCKX6-D1, the ortholog of rice OsCKX2, is associated with grain weight in hexaploid wheat. New Phytol 195:574–584CrossRefPubMedGoogle Scholar
  36. Zhang Y, Liu J, Xia X, He Z (2014) TaGS-D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat. Mol Breed 34:1097–1107CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Mamoona Hanif
    • 1
  • Fengmei Gao
    • 1
    • 2
  • Jindong Liu
    • 1
  • Weie Wen
    • 1
  • Yingjun Zhang
    • 1
  • Awais Rasheed
    • 1
    • 3
  • Xianchun Xia
    • 1
  • Zhonghu He
    • 1
    • 3
  • Shuanghe Cao
    • 1
  1. 1.Institute of Crop Science, National Wheat Improvement CenterChinese Academy of Agricultural Sciences (CAAS)BeijingChina
  2. 2.Keshan Agricultural Research InstituteHeilongjiang Academy of Agricultural SciencesKeshanChina
  3. 3.International Maize and Wheat Improvement Center (CIMMYT), c/o CAASBeijingChina

Personalised recommendations