Skip to main content
Log in

De novo transcriptome sequencing and comparative analysis of differentially expressed genes in kiwifruit under waterlogging stress

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Kiwifruit plants are particularly sensitive to soil waterlogging. Enhancement of waterlogging tolerance in kiwifruit can potentially considerably increase its fruit production and extend the shelf life of the fruit. We generated 95,945,496 bases of high-quality sequence from kiwifruit roots after 4-day waterlogging treatment using Illumina sequencing technology, and demonstrated de novo assembly and annotation of genes. These reads were assembled into 140,187 unigenes (mean length 556 bp). Based on a similarity search with known proteins in the non-redundant (nr) protein database, 56,912 unigenes (40.60 %) were functionally annotated with a cutoff E-value of 10−5. Using the RPKM method, we investigated differentially expressed genes by applying the Benjamini and Hochberg correction. Overall, 14,843 transcripts were identified as differentially expressed unigenes (DEG) in two samples. Among these unigenes, 5697 DEGs (about 38.5 %) were found to be induced by waterlogging, and 9146 DEGs (about 61.5 %) decreased in abundance. To identify the most important pathways represented by DEGs, we compared these genes to those in the KEGG database. The categories “ribosome,” “plant hormone signal transduction,” and “starch and sucrose metabolism” pathways contained the three highest numbers of differentially expressed unigenes and, thus, appear to play important roles in waterlogging perception. We identified many transcription factors, belonging to AP2/ERF, WRKY, TGA, MYB, bZIP families, implicating a potential function for them in waterlogging responses in kiwifruit. Our results provide a transcriptome profile that is associated with waterlogging stress induction in kiwifruit plants. The potential waterlogging stress-related transcripts identified in this study represent candidate genes and molecular resources to further understand the molecular mechanisms of the waterlogging response in kiwifruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADH:

Alcohol dehydrogenase

KEGG:

Kyoto encyclopedia of genes and genomes

COG:

Clusters of orthologous groups

GO:

Gene ontology

RPKM:

Reads per kilobase of exon region in a given gene per million mapped fragments

DEGs:

Differential expression genes

FDR:

False discovery rate

PDC:

Pyruvate decarboxylase

SK1:

SNORKEL1

References

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Ann Rev Plant Biol 59:313–339

    Article  CAS  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2010) Life in the balance: a signaling network controlling survival of flooding. Curr Opin Plant Biol 13:489–494

    Article  CAS  PubMed  Google Scholar 

  • Branco-Price C, Kaiser KA, Jang CJH, Larive CK, Bailey-Serres J (2008) Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana. Plant J 56:743–755

    Article  CAS  PubMed  Google Scholar 

  • Cai BH, Zhang JY, Gao ZH, Qu SC, Tong ZG, Mi L, Qiao YS, Zhang Z (2008) An improved method for isolation of total RNA from the leaves of Fragaria spp. Jiangsu J Agric Sci 24:875–877

    Google Scholar 

  • Chen J, Tian Q, Pang T, Jiang L, Wu R, Xia X, Yin W (2014) Deep-sequencing transcriptome analysis of low temperature perception in a desert tree, Populus euphratica. BMC Genomics 15:326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng R-l, Feng J, Zhang B-X, Huang Y, Cheng J, Zhang C-X (2014) Transcriptome and gene expression analysis of an oleaginous diatom under different salinity conditions. BioEnergy Res 7:192–205

    Article  CAS  Google Scholar 

  • Christianson JA, Llewellyn DJ, Dennis ES, Wilson IW (2010) Global gene expression responses to waterlogging in roots and leaves of cotton (Gossypium hirsutum L.). Plant Cell Physiol 51:21–37

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    Article  CAS  PubMed  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res 38:W64–W70

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fukao T (2006) A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18:2021–2034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fukao T, Bailey-Serres J (2004) Plant responses to hypoxia—is survival a balancing act? Trends Plant Sci 9:449–456

    Article  CAS  PubMed  Google Scholar 

  • Garabagi F, Duns G, Strommer S (2005) Selective recruitment of Adh genes for distinct enzymatic functions in Petunia hybrida. Plant Mol Biol 58:283–294

    Article  CAS  PubMed  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grossman AR, Catalanotti C, Yang W, Dubini A, Magneschi L, Subramanian V, Posewitz MC, Seibert M (2011) Multiple facets of anoxic metabolism and hydrogen production in the unicellular green alga Chlamydomonas reinhardtii. New Phytol 190:279–288

    Article  CAS  PubMed  Google Scholar 

  • Hattori Y, Nagai K, Furukawa S, Song X-J, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M (2009) The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature 460:1026–1030

    Article  CAS  PubMed  Google Scholar 

  • Hinz M, Wilson IW, Yang J, Buerstenbinder K, Llewellyn D, Dennis ES, Sauter M, Dolferus R (2010) Arabidopsis RAP2.2: an ethylene response transcription factor that is important for hypoxia survival. Plant Physiol 153:757–772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ismond KP, Dolferus R, De Pauw M, Dennis ES, Good AG (2003) Enhanced low oxygen survival in Arabidopsis through increased metabolic flux in the fermentative pathway. Plant Physiol 132:1292–1302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jackson MB, Colmer TD (2005) Response and adaptation by plants to flooding stress. Ann Bot (Lond) 96:501–505

    Article  CAS  Google Scholar 

  • Jung KH, Seo YS, Walia H, Cao P, Fukao T, Canlas PE, Amonpant F, Bailey-Serres J, Ronald PC (2010) The submergence tolerance regulator Sub1A mediates stress-responsive expression of AP2/ERF transcription factors. Plant Physiol 152:1674–1692

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Junttila S, Laiho A, Gyenesei A, Rudd S (2013) Whole transcriptome characterization of the effects of dehydration and rehydration on Cladonia rangiferina, the grey reindeer lichen. BMC Genomics 14:870

    Article  PubMed Central  PubMed  Google Scholar 

  • Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2011) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40:109–114

    Article  Google Scholar 

  • Kende H, van der Knaap E, Cho H (1998) Deepwater rice a model plant to study stem elongation. Plant Physiol 118:1105–1110

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Komatsu S, Sugimoto T, Hoshino T, Nanjo Y, Furukawa K (2010) Identification of flooding stress responsible cascades in root and hypocotyl of soybean using proteome analysis. Amino Acids 38:729–738

    Article  CAS  PubMed  Google Scholar 

  • Komatsu S, Thibaut D, Hiraga S, Kato M, Chiba M, Hashiguchi A, Tougou M, Shimamura S, Yasue H (2011) Characterization of a novel flooding stress-responsive alcohol dehydrogenase expressed in soybean roots. Plant Mol Biol 77:309–322

    Article  CAS  PubMed  Google Scholar 

  • Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol 130:2129–2141

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kreuzwieser J, Rennenberg H (2014) Molecular and physiological responses of trees to waterlogging stress. Plant Cell Environ 37:2245–2259

    CAS  PubMed  Google Scholar 

  • Lee J, Noh EK, Choi H-S, Shin SC, Park H, Lee H (2012) Transcriptome sequencing of the Antarctic vascular plant Deschampsia antarctica Desv. under abiotic stress. Planta 237:823–836

    Article  PubMed  Google Scholar 

  • Licausi F, Van Dongen JT, Giuntoli B, Novi G, Santaniello A, Geigenberger P, Perata P (2010) HRE1 and HRE2, two hypoxia-inducible ethylene response factors, affect anaerobic responses in Arabidopsis thaliana. Plant J 62:302–315

    Article  CAS  PubMed  Google Scholar 

  • Liu Z, Adams KL (2007) Expression partitioning between genes duplicated by polyploidy under abiotic stress and during organ development. Curr Biol 17:1669–1674

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−∆∆Ct method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mi YF (2009) Research on tolerance identification and physiological mechanism of kiwifruit seeding to root zone hypoxia. Thesis for doctor degree, Northwest A&F University

  • Mustroph A, Lee SC, Oosumi T, Zanetti ME, Yang H, Ma K, Yaghoubi-Masihi A, Fukao T, Bailey-Serres J (2010) Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses. Plant Physiol 152:1484–1500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mustroph A, Barding GA Jr, Kaiser KA, Larive CK, Bailey-Serres J (2014) Characterization of distinct root and shoot responses to low-oxygen stress in Arabidopsis with a focus on primary C-and N-metabolism. Plant Cell Environ 37:2366–2380

    CAS  PubMed  Google Scholar 

  • Nanjo Y, Maruyama K, Yasue H, Yamaguchi-Shinozaki K, Shinozaki K, Komatsu S (2011) Transcriptional responses to flooding stress in roots including hypocotyl of soybean seedlings. Plant Mol Biol 77:129–144

    Article  CAS  PubMed  Google Scholar 

  • Narsai R, Whelan J (2013) How unique is the low oxygen response? An analysis of the anaerobic response during germination and comparison with abiotic stress in rice and Arabidopsis. Front Plant Sci 4:349

    Article  PubMed Central  PubMed  Google Scholar 

  • Narsai R, Rocha M, Geigenberger P, Whelan J, van Dongen JT (2011) Comparative analysis between plant species of transcriptional and metabolic responses to hypoxia. New Phytol 190:472–487

    Article  CAS  PubMed  Google Scholar 

  • Peng HP, Chan CS, Shih MC, Yang SF (2001) Signaling events in the hypoxic induction of alcohol dehydrogenase gene in Arabidopsis. Plant Physiol 126:742–749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Peng HP, Lin TY, Wang NN, Shih MC (2005) Differential expression of genes encoding 1-aminocyclopropane-1-carboxylate synthase in Arabidopsis during hypoxia. Plant Mol Biol 58:15–25

    Article  CAS  PubMed  Google Scholar 

  • Pierik R, van Aken JM, Voesenek LACJ (2009) Is elongation-induced leaf emergence beneficial for submerged Rumex species? Ann Bot 103:353–357

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P, Shen QJ (2010) WRKY transcription factors. Trends Plant Sci. 15:247–258

    Article  CAS  PubMed  Google Scholar 

  • Sairam RK, Dharmar K, Chinnusamy V, Meena RC (2009) Waterlogging-induced increase in sugar mobilization, fermentation, and related gene expression in the roots of mung bean (Vigna radiata). J Plant Physiol 166:602–616

    Article  CAS  PubMed  Google Scholar 

  • Sasidharan R, Mustroph A, Boonman A, Akman M, Ammerlaan AMH, Breit T, Schranz ME, Voesenek LACJ, van Tienderen PH (2013) Root transcript profiling of two Rorippa species reveals gene clusters associated with extreme submergence tolerance. Plant Physiol 163:1277–1292

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sauter M (2000) Rice in deep water: how to take heed against a sea of troubles. Naturwissenschaften 87:289–303

    Article  CAS  PubMed  Google Scholar 

  • Steffens B, Sauter M (2005) Epidermal cell death in rice is regulated by ethylene, gibberellin, and abscisic acid. Plant Physiol 139:713–721

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steffens B, Wang J, Sauter M (2006) Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. Planta 223:604–612

    Article  CAS  PubMed  Google Scholar 

  • Tamang BG, Magliozzi JO, Maroof MAS, Fukao T (2014) Physiological and transcriptomic characterization of submergence and reoxygenation responses in soybean seedlings. Plant Cell Environ 37:2350–2365

    CAS  PubMed  Google Scholar 

  • Tougou M, Hashiguchi A, Yukawa K, Nanjo Y, Hiraga S, Nakamura T, Nishizawa K, Komatsu S (2012) Responses to flooding stress in soybean seedlings with the alcohol dehydrogenase transgene. Plant Biotechnol 29:301–305

    Article  CAS  Google Scholar 

  • van Veen H, Mustroph A, Barding GA, Vergeer-van Eijk M, Welschen-Evertman RAM, Pedersen O, Visser EJW, Larive CK, Pierik R, Bailey-Serres J (2013) Two Rumex species from contrasting hydrological niches regulate flooding tolerance through distinct mechanisms. Plant Cell 25:4691–4707

    Article  PubMed Central  PubMed  Google Scholar 

  • Voesenek LACJ, Bailey-Serres J (2013) Flooding tolerance: O2 sensing and survival strategies. Curr Opin Plant Biol 16:1–7

    Article  Google Scholar 

  • Voesenek LACJ, Bailey-Serres J (2015) Flood adaptive traits and processes: an overview. New Phytol 206:57–73

    Article  CAS  PubMed  Google Scholar 

  • Voesenek LACJ, Sasidharan R (2013) Ethylene—and oxygen signalling—drive plant survival during flooding. Plant Biol 15:426–435

    Article  CAS  PubMed  Google Scholar 

  • Voesenek LACJ, Rijnders JH, Peeters AJM, Van de Steeg HM, De Kroon H (2004) Plant hormones regulate fast shoot elongation under water: from genes to communities. Ecology 85:16–27

    Article  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Gao S, Yang Y, Huang M, Cheng L, Wei Q, Fei Z, Gao J, Hong B (2013) Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress. BMC Genom 14:662

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    Article  CAS  PubMed  Google Scholar 

  • Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L (2006) WEGO: a web tool for plotting GO annotations. Nucleic Acids Res 34:W293–W297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yin D, Chen S, Chen F, Guan Z, Fang W (2009) Morphological and physiological responses of two chrysanthemum cultivars differing in their tolerance to waterlogging. Environ Exp Bot 67:87–93

    Article  CAS  Google Scholar 

  • Yin X, Allan AC, Xu Q, Burdon J, Dejnoprat S, Chen K (2012) Differential expression of kiwifruit ERF genes in response to postharvest abiotic stress. Postharvest Biol Technol 66:1–7

    Article  CAS  Google Scholar 

  • Zhang J-Y, Wang Q-J, Guo Z-R (2012) Progresses on plant AP2/ERF transcription factors. Hereditas 34(7):835–847

    Article  PubMed  Google Scholar 

  • Zhuang J, Cai B, Peng R-H, Zhu B, Jin X-F, Xue Y, Gao F, Fu X-Y, Tian Y-S, Zhao W, Qiao Y-S, Zhang Z, Xiong A-S, Yao Q-H (2008) Genome-wide analysis of the AP2/ERF gene family in Populus trichocarpa. Biochem Biophys Res Commun 371:468–474

    Article  CAS  PubMed  Google Scholar 

  • Zhuang J, Peng R-H, Cheng Z-M, Zhang J, Cai B, Zhang Z, Gao F, Zhu B, Fu X-Y, Jin X-F, Chen J-M, Qiao Y-S, Xiong A-S, Yao Q-H (2009) Genome-wide analysis of the putative AP2/ERF family genes in Vitis vinifera. Sci Hortic 123:73–81

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Natural Science Foundation of Jiangsu Province (Grant No. BK20140760) and the National Natural Science Foundation of China (NSFC) (31401854).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong-Ren Guo.

Additional information

Ji-Yu Zhang and Sheng-Nan Huang have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Length frequency distribution of unigenes (TIFF 168 kb)

Supplemental Fig. 2

Expression analysis of 10 DEGs by qRT-PCR performed on 10 members randomly selected from among the regulated genes (TIFF 10514 kb)

Supplemental Tab. 1

Primers for RT-qPCR in this study (DOCX 16 kb)

Supplemental Tab. 2

Length distribution of assembled contigs and unigenes (DOCX 17 kb)

Supplemental Tab. 3

Differentially expressed genes between two samples (p < 0.05) (XLS 8413 kb)

Supplemental Tab. 4

Most highly significantly regulated differentially expressed 200 genes between the two samples (q < 0.001) (XLS 53 kb)

Supplemental Tab. 5

Over-representative GO terms of DEGs in waterlogging-stressed kiwifruit (q < 0.05) (XLS 49 kb)

Supplemental Tab. 6

Pathway enrichment analyses for DEGs (q < 0.05) (XLS 31 kb)

Supplemental Tab. 7

Expression of the ADH and PDC gene families between two samples (q < 0.05) (XLS 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JY., Huang, SN., Mo, ZH. et al. De novo transcriptome sequencing and comparative analysis of differentially expressed genes in kiwifruit under waterlogging stress. Mol Breeding 35, 208 (2015). https://doi.org/10.1007/s11032-015-0408-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0408-0

Keywords

Navigation