Molecular Breeding

, 35:213 | Cite as

Isolation of the dwarfing Rht-B1p (Rht17) gene from wheat and the development of an allele-specific PCR marker

  • M. S. Bazhenov
  • M. G. Divashuk
  • Y. Amagai
  • N. Watanabe
  • G. I. Karlov


Plant height is one of the most important traits of wheat because it influences lodging resistance, harvest index and yield. Reduced height of wheat is achieved mainly by the introduction of Rht-B1b (Rht1), Rht-B1e (Rht11) or Rht-D1b (Rht2) dwarfing genes, which produce mutant DELLA proteins that constitutively restrain plant growth irrespective of gibberellin hormone level. The exploration of new variations of these genes is necessary for plant breeding purposes. A set of alleles with various degrees of height reduction may be useful for optimization of wheat plant height in different environments. Also, new alleles may give different pleiotropic effects on other important traits, as leaf area, coleoptile length, disease resistance and preharvest sprouting tolerance. In the present work, we discovered a new allelic variation at the Rht-B1 locus in the ‘Chris Mutant’ bread wheat line that carries the Rht17 gene. The Rht-B1 gene from the Chris Mutant line was cloned and sequenced. The alignment showed an C-to-T substitution at a position 178 nucleotides from the start codon that created a stop codon in the DELLA domain. We designated the new allele as Rht-B1p and developed a diagnostic PCR marker for its identification. As a result of crossing and segregation analysis, we showed that Rht-B1p reduced plant height by approximately 30 and 50 % in bread wheat and durum wheat, respectively, under greenhouse conditions. We concluded that Rht-B1p was identical to the earlier identified gene Rht17.


DELLA protein Diagnostic PCR marker GA-insensitive Reduced height Rht17 Rht-B1p 



The authors greatly thank Dr. Andreas Börner for critical reading of the manuscript.

Supplementary material

11032_2015_407_MOESM1_ESM.pdf (125 kb)
Supplementary material 1 (PDF 125 kb)
11032_2015_407_MOESM2_ESM.pdf (68 kb)
Supplementary material 2 (PDF 68 kb)
11032_2015_407_MOESM3_ESM.pdf (267 kb)
Supplementary material 3 (PDF 266 kb)


  1. Davière J-M, Achard P (2013) Gibberellin signaling in plants. Development 140:1147–1151. doi: 10.1242/dev.087650 CrossRefPubMedGoogle Scholar
  2. Divashuk MG, Vasilyev AV, Bespalova LA, Karlov GI (2012) Identity of the Rht-11 and Rht-B1e reduced plant height genes. Rus J Genet 48:761–763CrossRefGoogle Scholar
  3. Divashuk MG, Bespalova LA, Vasilyev AV, Fesenko IA, Puzyrnaya OY, Karlov GI (2013) Reduced height genes and their importance in winter wheat cultivars grown in southern Russia. Euphytica 190:137–144CrossRefGoogle Scholar
  4. Ellis M, Spielmeyer W, Gale K et al (2002) “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 105:1038–1042. doi: 10.1007/s00122-002-1048-4 CrossRefPubMedGoogle Scholar
  5. Ellis MH, Rebetzke GJ, Chandler P et al (2004) The effect of different height reducing genes on the early growth of wheat. Funct Plant Biol 31:583–589CrossRefGoogle Scholar
  6. Gale MD, Youssefian S (1985) Dwarfing genes in wheat. In: Russel GE (ed) Progress in plant breeding—1. Butterworths, London, pp 1–35CrossRefGoogle Scholar
  7. Gasperini D, Greenland A, Hedden P et al (2012) Genetic and physiological analysis of Rht8 in bread wheat: an alternative source of semi-dwarfism with a reduced sensitivity to brassinosteroids. J Exp Bot 63:4419–4436. doi: 10.1093/jxb/ers138 PubMedCentralCrossRefPubMedGoogle Scholar
  8. Gent MPN, Kiyomoto RK (1997) Physiological and agronomic consequences of Rht genes in wheat. J Crop Prod 1:27–46. doi: 10.1300/J144v01n01_02 CrossRefGoogle Scholar
  9. Heiner RE, Elsayed FA (1974) Registration of MN6616M wheat germplasm (Reg. No. GP 36). Crop Sci 14:342. doi: 10.2135/cropsci1974.0011183X001400020065x CrossRefGoogle Scholar
  10. Hirsch S, Oldroyd GE (2009) GRAS-domain transcription factors that regulate plant development. Plant Signal Behav 4:698–700PubMedCentralCrossRefPubMedGoogle Scholar
  11. King RW, Gale MD, Quarrie SA (1983) Effects of Norin 10 and Tom Thumb dwarfing genes on morphology, physiology and abscisic acid production in wheat. Ann Bot 51:201–208Google Scholar
  12. Knopf C, Becker H, Ebmeyer E, Korzun V (2008) Occurrence of three dwarfing Rht genes in German winter wheat varieties. Cereal Res Commun 36:553–560CrossRefGoogle Scholar
  13. Konzak CF (1987) Mutations and mutation breeding. In: Heyne EG (ed) Wheat and wheat improvement, 2nd edn. American Society of Agronomy, Inc., Crop Science Society of America, Inc. and Soil Science Society of America, Inc., Madison, Wisconsin, USA, pp 428–443Google Scholar
  14. Li A, Yang W, Guo X et al (2012a) Isolation of a gibberellin-insensitive dwarfing gene, Rht-B1e, and development of an allele-specific PCR marker. Mol Breed 30:1443–1451. doi: 10.1007/s11032-012-9730-y CrossRefGoogle Scholar
  15. Li Y, Xiao J, Wu J et al (2012b) A tandem segmental duplication (TSD) in green revolution gene Rht-D1b region underlies plant height variation. New Phytol 196:282–291. doi: 10.1111/j.1469-8137.2012.04243.x CrossRefPubMedGoogle Scholar
  16. Liang D, Tang J, Peña RJ, Singh R, He X, Shen X, Yao D, Xia X, He Z (2010) Characterization of CIMMYT bread wheats for high-and low-molecular weight glutenin subunits and other quality-related genes with SDS-PAGE, RP-HPLC and molecular markers. Euphytica 172:235–250CrossRefGoogle Scholar
  17. McDonald JH (2014) Handbook of biological statistics, 3rd edn. Sparky House Publishing, Baltimore, MarylandGoogle Scholar
  18. Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101:20–78CrossRefPubMedGoogle Scholar
  19. Mohd-Yusoff NF, Ruperao P, Tomoyoshi NE et al (2015) Scanning the effects of ethyl methanesulfonate on the whole genome of Lotus japonicus using second-generation sequencing analysis. G3: Genes| Genomes| Genetics 5:559–567. doi: 10.1534/g3.114.014571
  20. Nicholas KB, Nicholas HB Jr (1997) GeneDoc: a tool for editing and annotating multiple sequence alignments. Distributed by the authorGoogle Scholar
  21. Pearce S, Saville R, Vaughan SP et al (2011) Molecular characterization of Rht-1 dwarfing genes in hexaploid wheat. Pant Physiol 157:1820–1831. doi: 10.1104/pp.111.183657 Google Scholar
  22. Peng J, Richards DE, Hartley NM et al (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261CrossRefPubMedGoogle Scholar
  23. Pepe JF, Heiner RE (1975) Influence of two different dwarfing sources on yield and protein percentage in semidwarf wheat. Crop Sci 15:637. doi: 10.2135/cropsci1975.0011183X001500050009x CrossRefGoogle Scholar
  24. Rebetzke GJ, Appels R, Morrison AD et al (2001) Quantitative trait loci on chromosome 4B for coleoptile length and early vigour in wheat (Triticum aestivum L.). Aust J Agric Res 52:1221–1234CrossRefGoogle Scholar
  25. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci 81:8014–8018PubMedCentralCrossRefPubMedGoogle Scholar
  26. Srinivasachary, Gosman N, Steed A et al (2008) Susceptibility to Fusarium head blight is associated with the Rht-D1b semi-dwarfing allele in wheat. Theor Appl Genet 116:1145–1153. doi: 10.1007/s00122-008-0742-2
  27. Srinivasachary, Gosman N, Steed A et al (2009) Semi-dwarfing Rht-B1 and Rht-D1 loci of wheat differ significantly in their influence on resistance to Fusarium head blight. Theor Appl Genet 118:695–702. doi: 10.1007/s00122-008-0930-0
  28. Tan M-K, Koval J, Ghalayini A (2013) Novel genetic variants of GA-insensitive Rht-1 genes in hexaploid wheat and their potential agronomic value. PLoS ONE 8:e69690. doi: 10.1371/journal.pone.0069690 PubMedCentralCrossRefPubMedGoogle Scholar
  29. Wen W, Deng Q, Jia H et al (2013) Sequence variations of the partially dominant DELLA gene Rht-B1c in wheat and their functional impacts. J Exp Bot 64:3299–3312. doi: 10.1093/jxb/ert183 PubMedCentralCrossRefPubMedGoogle Scholar
  30. Wu J, Kong X, Wan J et al (2011) Dominant and pleiotropic effects of a GAI gene in wheat results from a lack of interaction between DELLA and GID1. Plant Physiol 157:2120–2130. doi: 10.1104/pp.111.185272 PubMedCentralCrossRefPubMedGoogle Scholar
  31. Zanke CD, Ling J, Plieske J et al (2014) Whole genome association mapping of plant height in winter wheat (Triticum aestivum L.). PLoS ONE 9(11):e113287. doi: 10.1371/journal.pone.0113287 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • M. S. Bazhenov
    • 1
  • M. G. Divashuk
    • 1
  • Y. Amagai
    • 2
  • N. Watanabe
    • 2
  • G. I. Karlov
    • 1
  1. 1.Center for Molecular BiotechnologyRussian State Agrarian University – MTAAMoscowRussia
  2. 2.College of AgricultureIbaraki UniversityInashikiJapan

Personalised recommendations