Advertisement

Molecular Breeding

, 35:204 | Cite as

Large-scale development of expressed sequence tag-derived simple sequence repeat markers by deep transcriptome sequencing in garlic (Allium sativum L.)

  • Touming Liu
  • Liangbin Zeng
  • Siyuan Zhu
  • Xiaojun Chen
  • Qingming Tang
  • Shiyong Mei
  • Shouwei Tang
Article

Abstract

Garlic (Allium sativum L.) is an economically important crop and has significant value as a food, spice, and medicine. The lack of simple sequence repeat (SSR) markers is a major obstacle in genetic studies of garlic. In order to develop SSR markers on a large scale, we performed transcriptome analysis using Illumina pair-end sequencing. Approximately 69.7 million clean sequence reads were generated, and these reads were eventually assembled into 135,360 unigenes. Of these, 56,953 (42.1 %) unigenes were annotated for their function. Examination of SSR loci in these 135,360 ESTs identified 2446 SSRs. Because 940 of the loci were located on the end of the EST, only the residual 1506 SSRs were flanked by designing primer pairs complementary to regions, and these regions were designated as SSR markers. Within these markers, the trinucleotide repeat motif was the most abundant type (66.1 %), with the AGA/TCT and GAA/TTC motifs occurring most frequently. Using 200 randomly selected EST-SSRs, 194 markers were successfully amplified in garlic and 155–186 SSRs in five other Allium species. This suggests that the markers were good quality and had high cross-species transferability. The EST-SSRs developed in this study represent the first large-scale development of SSR markers for garlic. These SSRs could be used for the development of genetic and physical maps, quantitative trait loci mapping, genetic diversity studies, association mapping, and cultivar fingerprinting.

Keywords

Garlic Transcriptome Illumina sequencing SSR marker Transferability 

Notes

Acknowledgments

We kindly thank the Novogene Bioinformatics Institute for its assistance in original data processing and related bioinformatics analysis. This work was supported by grants from The Agricultural Science and Technology Innovation Program (ASTIP) and National Modern Agro-industry Technology Research System.

Supplementary material

11032_2015_399_MOESM1_ESM.xls (370 kb)
Table S1 The primer sequences of 1506 garlic SSR markers (XLS 369 kb)
11032_2015_399_MOESM2_ESM.xls (39 kb)
Table S2 The summary of 200 SSRs amplification in 6 Allium species (XLS 39 kb)

References

  1. Aggarwal RK, Hendre PS, Varshney RK, Bhat PR, Krishnakumar V, Singh L (2007) Identification, characterization and utilization of EST-derived genic microsatellite markers for genome analyses of coffee and related species. Theor Appl Genet 114:359–372CrossRefPubMedGoogle Scholar
  2. Alexandrov N, Brover V, Freidin S, Troukhan M, Tatarinova T, Zhang H, Swaller T, Lu Y, Bouck J, Flavell R, Feldmann K (2009) Insights into corn genes derived from large-scale cDNA sequencing. Plant Mol Biol 69:179–194PubMedCentralCrossRefPubMedGoogle Scholar
  3. Arumuganathan A, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Rep 9:208–218CrossRefGoogle Scholar
  4. Bai X, Luo L, Yan W, Kovi M, Zhan W, Xing Y (2010) Genetic dissection of rice grain shape using a recombinant inbred line population derived from two contrasting parents and fine mapping a pleiotropic quantitative trait locus qGL7. BMC Genet 11:16PubMedCentralCrossRefPubMedGoogle Scholar
  5. Bozhko M, Riegel R, Schubert R, Muller-Starck G (2003) A cyclophilin gene marker confirming geographical differentiation of Norway spruce populations and indicating viability response on excess soil-born salinity. Mol Ecol 12:3147–3155CrossRefPubMedGoogle Scholar
  6. Cloutier S, Niu Z, Datla R, Duguid S (2009) Development and analysis of EST-SSRs for flax (Linum usitatissimum L.). Theor Appl Genet 119:53–63CrossRefPubMedGoogle Scholar
  7. Cunha C, Hoogerheide E, Zucchi M, Monteiro M, Pinheiro J (2012) New microsatellite markers for garlic, Allium Sativum (Alliaceae). Am J Bot e17–e19Google Scholar
  8. Deng Y, Yao J, Wang X, Guo H, Duan D (2012) Transcriptome sequencing and comparative analysis of Saccharina japonica (Laminariales, Phaeophyceae) under blue light induction. PLoS One 7:e39704PubMedCentralCrossRefPubMedGoogle Scholar
  9. Eujayl I, Sledge MK, Wang L, May GD, Chekhovskiy K, Zwonitzer JC, Mian MAR (2003) Medicago trunculata EST-SSRs reveal cross-species genetic markers for Medicago spp. Theor Appl Genet 108:414–422CrossRefPubMedGoogle Scholar
  10. Gao C, Xin P, Cheng C, Tang Q, Chen P, Wang C, Zang G, Zhao L (2014) Diversity analysis in Cannabis sativa based on large-scale development of expressed sequence tag-derived simple sequence repeat markers. PLoS One 9(10):e110638PubMedCentralCrossRefPubMedGoogle Scholar
  11. Garg R, Patel R, Tyagi A, Jain M (2011) De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res 18:53–63PubMedCentralCrossRefPubMedGoogle Scholar
  12. Grabherr M, Haas B, Yassour M, Levin J, Thompson D, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q et al (2011) Full length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644–652PubMedCentralCrossRefPubMedGoogle Scholar
  13. Guo R, Mao Y, Cai J, Wang J, Wu J, Qiu Y (2014) Characterization and cross-species transferability of EST-SSR markers developed from the transcriptome of Dysosma versipellis (Berberidaceae) and their application to population genetic studies. Mol Breeding 34:1733–1746CrossRefGoogle Scholar
  14. He G, Meng R, Newman M, Gao G, Pittman R, Prakash C (2003) Microsatellites as DNA markers in cultivated peanut (Arachis hypogaea L.). BMC Plant Biol 3:3PubMedCentralCrossRefPubMedGoogle Scholar
  15. Ipek M, Ipek A, Simon PW (2003) Comparison of AFLPs, RAPD markers, and isozymes for diversity assessment of garlic and detection of putative duplicates in germplasm collections. J Am Soc Hortic Sci 128:246–252Google Scholar
  16. Ipek M, Ipek A, Almquist SG, Simon PW (2005) Demonstration of linkage and development of the first low-density genetic map of garlic, based on AFLP markers. Theor Appl Genet 110:228–236CrossRefPubMedGoogle Scholar
  17. Kamenetsky R (2007) Garlic: botany and horticulture. Hortic Rev 33:123–172CrossRefGoogle Scholar
  18. Kamenetsky R, Shafir I, Zemah H, Barzilay A, Rabinowitch H (2004) Environmental control of garlic growth and florogenesis. J Am Soc Hortic Sci 129:144–151Google Scholar
  19. Kamenetsky R, Faigenboim A, Mayer E, Michael T, Gershberg C, Kimhi S, Esquira I, Shalom S, Eshel D, Rabinowitch H et al (2015) Integrated transcriptome catalogue and organ-specific profiling of gene expression in fertile garlic (Allium sativum L.). BMC Genomics 16:12PubMedCentralCrossRefPubMedGoogle Scholar
  20. Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K, Kishimoto N, Yazaki J, Ishikawa M, Yamada H, Ooka H et al (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376–379CrossRefPubMedGoogle Scholar
  21. Lampasona SG, Martínez L, Burba JL (2003) Genetic diversity among selected Argentinean garlic clones (Allium sativum L.) using AFLP (Amplified Fragment Length Polymorphism). Euphytica 132:115–119CrossRefGoogle Scholar
  22. Lee G, Kwon S, Park Y, Lee M, Kim H, Lee J, Lee S, Gwag J, Kim C, Ma K (2011) Cross-amplification of SSR markers developed from Allium sativum to other Allium species. Sci Hortic 128:401–407CrossRefGoogle Scholar
  23. Liu T, Li L, Zhang Y, Xu C, Li X, Xing Y (2011a) Comparison of quantitative trait loci for rice yield, panicle length and spikelet density across three connected populations. J Genet 90:377–382CrossRefPubMedGoogle Scholar
  24. Liu T, Zhang Y, Zhang H, Xing Y (2011b) Quantitative trait loci for the number of grains per panicle dependent on or independent of heading date in rice (Oryza Sativa L.). Breeding Sci 61:142–150CrossRefGoogle Scholar
  25. Liu T, Zhu S, Fu L, Tang Q, Yu Y, Chen P, Luan M, Wang C, Tang S (2013a) Development and characterization of 1827 expressed sequence tag-derived simple sequence repeat markers in ramie (Boehmeria nivea L. Gaud). PLoS One 8:e60346PubMedCentralCrossRefPubMedGoogle Scholar
  26. Liu T, Zhu S, Tang Q, Chen P, Yu Y, Tang S (2013b) De novo assembly and characterization of transcriptome using Illumina paired-end sequencing and identification of CesA gene in ramie (Boehmeria nivea L. Gaud). BMC Genomics 14:125PubMedCentralCrossRefPubMedGoogle Scholar
  27. Luro FL, Costantino G, Terol J, Argout X, Allario T, Wincker P, Talon M, Ollitrault P, Morillon R (2008) Transferability of the EST-SSRs developed on Nules clementine (Citrus clementina Hort ex Tan) to other Citrus species and their effectiveness for genetic mapping. BMC Genomics 9:287PubMedCentralCrossRefPubMedGoogle Scholar
  28. Ma K, Kwag J, Zhao W, Dixit A, Lee G, Kim H, Chung I, Kim N, Lee J, Ji J et al (2009) Isolation and characteristics of eight novel polymorphic microsatellite loci from the genome of garlic (Allium sativum L.). Sci Hortic 122:355–361CrossRefGoogle Scholar
  29. Martin KW, Ernst E (2003) Herbal medicines for treatment of bacterial infections: a review of controlled clinical trials. J Antimicrob Chemother 51:241–246CrossRefPubMedGoogle Scholar
  30. Mayer E, Winiarczyk K, Błaszczyk L, Kosmala A, Rabinowitch H, Kamenetsky R (2013) Male gametogenesis and sterility in garlic (Allium sativum L.): barriers on the way to fertilization and seed production. Planta 237:103–120CrossRefGoogle Scholar
  31. Neta R, David-Schwartz R, Peretz Y, Sela I, Rabinowitch H, Flaishman M, Kamenetsky R (2011) Flower development in garlic: the ups and downs of gaLFY expression. Planta 233:1063–1072CrossRefPubMedGoogle Scholar
  32. Peng JH, Lapitan NL (2005) Characterization of EST-derived microsatellites in the wheat genome and development of eSSR markers. Funct Integr Genomics 5:80–96CrossRefPubMedGoogle Scholar
  33. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breeding 2:225–238CrossRefGoogle Scholar
  34. Soderlund C, Descour A, Kudrna D, Bomhoff M, Boyd L, Currie J, Angelova A, Collura K, Wissotski M, Ashley E et al (2009) Sequencing, mapping, and analysis of 27,455 maize full-length cDNAs. PLoS Genet 5:e1000740PubMedCentralCrossRefPubMedGoogle Scholar
  35. Sun X, Zhou S, Meng F, Liu S (2012) De novo assembly and characterization of the garlic (Allium sativum) bud transcriptome by Illumina sequencing. Plant Cell Rep 31:1823–1828CrossRefPubMedGoogle Scholar
  36. Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotechnol 23:48–55CrossRefPubMedGoogle Scholar
  37. Varshney RK, Grosse I, Hahnel U, Siefken R, Prasad M, Stein N, Langridge P, Altschmied L, Grane A (2006) Genetic mapping and BAC assignment of EST-derived SSR markers shows nonuniform distribution of genes in the barley genome. Theor Appl Genet 113:239–250CrossRefPubMedGoogle Scholar
  38. Wang Z, Fang B, Chen J, Zhang X, Luo Z, Huang L, Chen X, Li Y (2010) De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). BMC Genomics 11:726PubMedCentralCrossRefPubMedGoogle Scholar
  39. Wang HB, Jiang JF, Chen SM, Qi XY, Peng H, Li PR, Song AP, Guan ZY, Fang WM, Liao Y, Chen FD, Chen FD (2013) Next-generation sequencing of the Chrysanthemum nankingense (Asteraceae) transcriptome permits large-scale unigene assembly and SSR marker discovery. PLoS One 8:e62293PubMedCentralCrossRefPubMedGoogle Scholar
  40. Wu KS, Tanksley SD (1993) Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet 241:225–235CrossRefPubMedGoogle Scholar
  41. Wu H, Gong H, Liu P, He X, Luo S, Zheng X, Zhang C, He X, Luo J (2014a) Large-scale development of EST-SSR markers in sponge gourd via transcriptome sequencing. Mol Breeding 34:1903–1915CrossRefGoogle Scholar
  42. Wu T, Luo S, Wang R, Zhong Y, Xu X, Lin Y, He X, Sun B, Huang H (2014b) The first Illumina-based de novo transcriptome sequencing and analysis of pumpkin (Cucurbita moschata Duch.) and SSR marker development. Mol Breeding 34:1437–1447CrossRefGoogle Scholar
  43. Zeng S, Xiao G, Guo J, Fei Z, Xu Y, Roe B, Wang Y (2010) Development of a EST dataset and characterization of EST-SSRs in a traditional Chinese medicinal plant, Epimedium sagittatum (Sieb. Et Zucc.) Maxim. BMC Genomics 11:94PubMedCentralCrossRefPubMedGoogle Scholar
  44. Zhai L, Xu L, Wang Y, Cheng H, Chen Y, Gong Y, Liu L (2014) Novel and useful genic-SSR markers from de novo transcriptome sequencing of radish (Raphanus sativus L.). Mol Breeding 33:611–624CrossRefGoogle Scholar
  45. Zhang D, Choi D, Wanamaker S, Fenton R, Chin A, Malatrasi M, Turuspekov Y, Walia H, Akhunov E, Kianian P et al (2004) Construction and evaluation of cDNA libraries for large-scale expressed sequence tag sequencing in wheat (Triticum aestivum L.). Genetics 168:595–608PubMedCentralCrossRefPubMedGoogle Scholar
  46. Zheng XF, Pan C, Diao Y, You YN, Yang CZ, Hu ZL (2013) Development of microsatellite markers by transcriptome sequencing in two species of Amorphophallus (Araceae). BMC Genomics 14:490PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Touming Liu
    • 1
  • Liangbin Zeng
    • 1
  • Siyuan Zhu
    • 1
  • Xiaojun Chen
    • 1
  • Qingming Tang
    • 1
  • Shiyong Mei
    • 1
  • Shouwei Tang
    • 1
  1. 1.Institute of Bast Fiber Crops and Center of Southern Economic CropsChinese Academy of Agricultural SciencesChangshaChina

Personalised recommendations