Skip to main content
Log in

Genetic properties of 240 maize inbred lines and identity-by-descent segments revealed by high-density SNP markers

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Characterization of the genetic properties of maize inbred lines is beneficial not only for increasing knowledge of genetic diversity, but also for maize breeding. In the present study, a panel of 240 maize inbred lines commonly used in China, including three foundation parents Dan340, Mo17, and Huangzao4, and their derivatives, was genotyped using the MaizeSNP50 BeadChip, which contains 56,110 single-nucleotide polymorphism (SNP) markers. As a result, 40,757 SNPs with unique physical positions were successfully recalled in this panel with an average coverage of 50 kb per SNP. Five subgroups including Lan, LRC, PB, Reid, and SPT were inferred using 4000 SNPs with minor allele frequency ≥0.200, a result that was largely consistent with the pedigree information for these 240 inbred lines. With a cutoff value of r 2 < 0.100, linkage disequilibrium (LD) decay distances along the ten chromosomes of maize ranged from 397 to 819 kb, with an average of 643 kb. A subtotal of 26, 35, and 23 identity-by-descent segments, which were longer than both the average LD decay distance on the corresponding chromosomes and the local LD decay distance of r 2 < 0.100, were identified in the Dan340, Huangzao4, and Mo17 derivatives, respectively. Three lower peaks for Tajima’s D overlapped with three major quantitative trait loci (qkrn7, scmv1, and qHS2.09) in these derivatives. Elucidating the genetic properties of this panel provides information for investigating the genetic architecture of agronomic traits and heterotic grouping during maize breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Browning SR, Browning BL (2010) High-resolution detection of identity by descent in unrelated individuals. Am J Hum Genet 86:526–539

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Browning SR, Thompson EA (2012) Detecting rare variant associations by identity-by-descent mapping in case–control studies. Genetics 190:1521–1531

    Article  PubMed Central  PubMed  Google Scholar 

  • Feng L, Sebastian S, Smith S, Cooper M (2006) Temporal trends in SSR allele frequencies associated with long-term selection for yield of maize. Maydica 51:293–300

    Google Scholar 

  • Flint-Garcia SA, Thuillet AC, Yu J, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44:1054–1064

    Article  CAS  PubMed  Google Scholar 

  • Gaut BS, Long AD (2003) The lowdown on linkage disequilibrium. Plant Cell 15:1502–1506

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kong A, Masson G, Frigge ML, Gylfason A, Zusmanovich P, Thorleifsson G, Olason PI, Ingason A, Steinberg S, Rafnar T, Sulem P, Mouy M, Jonsson F, Thorsteinsdottir U, Gudbjartsson DF, Stefansson H, Stefansson K (2008) Detection of sharing by descent, long-range phasing and haplotype imputation. Nat Genet 40:1068–1075

    Article  CAS  PubMed  Google Scholar 

  • Legesse BW, Pixley KV, Botha AM (2009) Combining ability and heterotic grouping of highland transition maize inbred lines. Maydica 54:1–9

    Google Scholar 

  • Li Y (1998) Development and germplasm base of maize hybrids in China. Maydica 43:259–269

    Google Scholar 

  • Li Y, Wang TY (2010) Germplasm base of maize breeding in China and formation of foundation parents. J Maize Sci 15:1–8

    Google Scholar 

  • Li XH, Fu JH, Zhang SH, Yuan LX, Li MS (2000) RFLP detection of genetic variation of maize inbred lines. Acta Agron Sin 42:1156–1161

    Google Scholar 

  • Li Y, Shi Y, Cao Y, Wang T (2004) Establishment of a core collection for maize germplasm preserved in Chinese National Genebank using geographic distribution and characterization data. Genet Resour Crop Evol 51:845–852

    Article  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Liu XH, Tan ZB, Rong TZ (2009) Molecular mapping of a major QTL conferring resistance to SCMV based on immortal RIL population in maize. Euphytica 167:229–235

    Article  CAS  Google Scholar 

  • Liu CL, Weng JF, Zhang DG, Zhang XC, Yang XY, Shi LY, Meng QC, Yuan JH, Guo XP, Hao ZF, Xie CX, Li MS, Ci XK, Bai L, Li XH, Zhang SH (2014) Genome-wide association study of resistance to rough dwarf disease in maize. Eur J Plant Pathol 139:205–216

    Article  CAS  Google Scholar 

  • Lu Y, Yan J, Guimaraes CT, Taba S, Hao Z, Gao S, Chen S, Li J, Zhang S, Vivek BS, Magorokosho C, Mugo S, Makumbi D, Parentoni SN, Shah T, Rong T, Crouch JH, Xu Y (2009) Molecular characterization of global maize breeding germplasm based on genome-wide single nucleotide polymorphisms. Theor Appl Genet 120:93–115

    Article  CAS  PubMed  Google Scholar 

  • Lu M, Xie CX, Li XH, Hao ZF, Li MS, Weng JF, Zhang DG, Bai L, Zhang SH (2011) Mapping of quantitative trait loci for kernel row number in maize across seven environments. Mol Breed 28:143–152

    Article  CAS  Google Scholar 

  • McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, Flint-Garcia S, Thornsberry J, Acharya C, Bottoms C, Brown P, Browne C, Eller M, Guill K, Harjes C, Kroon D, Lepak N, Mitchell SE, Peterson B, Pressoir G, Romero S, Oropeza Rosas M, Salvo S, Yates H, Hanson M, Jones E, Smith S, Glaubitz JC, Goodman M, Ware D, Holland JB, Buckler ES (2009) Genetic properties of the maize nested association mapping population. Science 325:737–740

    Article  CAS  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Palaisa K, Morgante M, Tingey S, Rafalski A (2004) Long-range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. Proc Natl Acad Sci USA 101:9885–9890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reif JC, Melchinger AE, Xia XC, Warburton ML, Hoisington DA, Vasal SK, Beck D, Bohn M, Frisch M (2003) Use of SSRs for establishing heterotic groups in subtropical maize. Theor Appl Genet 107:947–957

    Article  CAS  PubMed  Google Scholar 

  • Sharbel TF, Haubold B, Mitchell-Olds T (2000) Genetic isolation by distance in Arabidopsis thaliana: biogeography and postglacial colonization of Europe. Mol Ecol 9:109–118

    Article  Google Scholar 

  • Stevens EL, Heckenberg G, Roberson ED, Baugher JD, Downey TJ, Pevsner J (2011) Inference of relationships in population data using identity-by-descent and identity-by-state. PLoS Genet 7:e1002287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun YW (2007) Analysis of genetic diversity among maize inbred lines using SSR markers. Dissertation, Chinese Academy of Agricultural Sciences

  • Tao Y, Jiang L, Liu Q, Zhang Y, Zhang R, Ingvardsen CR, Frei UK, Wang B, Lai J, Lubberstedt T, Xu M (2013) Combined linkage and association mapping reveals candidates for Scmv1, a major locus involved in resistance to sugarcane mosaic virus (SCMV) in maize. BMC Plant Biol 13:162

    Article  PubMed Central  PubMed  Google Scholar 

  • Thirunavukkarasu N, Hossain F, Shiriga K, Mittal S, Arora K, Rathore A, Mohan S, Shah T, Sharma R, Namratha PM, Mithra AS, Mohapatra T, Gupta HS (2013) Unraveling the genetic architecture of subtropical maize (Zea mays L.) lines to assess their utility in breeding programs. BMC Genomics 14:877

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang ZH, Zhang X (2004) Appraisement of morphological characters of main corn lines in China. J Maize Sci 12:7–9

    Google Scholar 

  • Wang YD, Duan MX, Xing JF, Wang JD, Zhang CY, Guo JL, Zhao JR, Cheng SJ (2004) Current situation and prospect of using P maize group to improve the heterosis utility and to development new germplasm. J Maize Sci 12:10–12

    Google Scholar 

  • Wang RH, Yu YT, Zhao JR, Shi YS, Song YC, Wang TY, Li Y (2008) Population structure and linkage disequilibrium of a mini core set of maize inbred lines in China. Theor Appl Genet 117:1141–1153

    Article  CAS  PubMed  Google Scholar 

  • Weng JF, Xie CX, Hao ZF, Wang JJ, Liu CL, Li MS, Zhang DG, Bai L, Zhang SH, Li XH (2011) Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines. PLoS One 6:e29229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Weng JF, Liu XJ, Wang ZH, Wang JJ, Zhang L, Hao ZF, Xie CX, Li MS, Zhang DG, Bai L, Liu CL, Zhang SH, Li XH (2012) Molecular mapping of the major resistance quantitative trait locus qHS2.09 with simple sequence repeat and single nucleotide polymorphism markers in maize. Phytopathology 102:692–699

    Article  CAS  PubMed  Google Scholar 

  • Wu CF (1983) A review on the germplasm bases of the main corn hybrids in China. Sci Agric Sin 16:1–8

    Google Scholar 

  • Wu X, Li Y, Shi Y, Song Y, Wang T, Huang Y, Li Y (2014) Fine genetic characterization of elite maize germplasm using high-throughput SNP genotyping. Theor Appl Genet 127:621–631

    Article  PubMed  Google Scholar 

  • Xie CX, Zhang SH, Li MS, Li XH, Hao ZF, Bai L, Zhang DG, Liang YH (2007) Inferring genome ancestry and estimating molecular relatedness among 187 Chinese maize inbred lines. J Genet Genomics 34:738–748

    Article  PubMed  Google Scholar 

  • Yan J, Shah T, Warburton ML, Buckler ES, McMullen MD, Crouch J (2009) Genetic characterization and linkage disequilibrium estimation of a global maize collection using SNP markers. PLoS One 4:e8451

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang X, Yan J, Shah T, Warburton ML, Li Q, Li L, Gao Y, Chai Y, Fu Z, Zhou Y, Xu S, Bai G, Meng Y, Zheng Y, Li J (2010) Genetic analysis and characterization of a new maize association mapping panel for quantitative trait loci dissection. Theor Appl Genet 121:417–431

    Article  PubMed  Google Scholar 

  • Yu Y, Wang R, Shi Y, Song Y, Wang T, Li Y (2007) Genetic diversity and structure of the core collection for maize inbred lines in china. Maydica 52:181–194

    Google Scholar 

  • Yu J, Zhang Z, Zhu C, Tabanao DA, Pressoir G, Tuinstra MR, Kresovich S, Todhunter RJ, Buckler ES (2009) Simulation appraisal of the adequacy of number of background markers for relationship estimation in association mapping. Plant Genome 2:63–77

    Article  CAS  Google Scholar 

  • Zhao F, Meng XB, Li WH, Xu XD, Wang B, Guo BT (2008) Inheritance relation of maize resistant genes among foundation parent huangzaosi and its derivative lines and hybrids. J Maize Sci 16:15–18

    CAS  Google Scholar 

  • Zheng DH, Li YR, Jin FX, Jiang JJ (2002) Pedigree and germplasm base of inbreds of the Lancaster heterotic group of maize in China. Sci Agric Sin 35:750–757

    CAS  Google Scholar 

  • Zuo W, Chao Q, Zhang N, Ye J, Tan G, Li B, Xing Y, Zhang B, Liu H, Fengler KA, Zhao J, Zhao X, Chen Y, Lai J, Yan J, Xu M (2015) A maize wall-associated kinase confers quantitative resistance to head smut. Nat Genet 47:151–157

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was jointly funded by the National Basic Research Program of China (2014CB138200), the National Natural Science Foundation of China (31201219 and 31471509), and the National High Technology Research and Development Program of China (2012AA101104).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianfeng Weng or Xinhai Li.

Additional information

Changlin Liu and Zhuanfang Hao have contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Distributions of MAF, gene diversity, and PIC (TIFF 3776 kb)

Supplementary Fig. 2

Estimated Ln (the probability of the data) and ΔK in structure analysis (TIFF 866 kb)

Supplementary Fig. 3

Dendrogram of the 240 maize inbred lines based on genetic distance clustering (TIFF 2186 kb)

Supplementary Fig. 4

Estimated population structure of the 240 maize inbred lines with values of K from K = 2 to K = 5. Different colors indicate the membership coefficient for each subgroup (TIFF 3325 kb)

Supplementary Fig. 5

LD decay patterns on the 10 chromosomes of maize. The symbol r 2 represents the LD statistic (TIFF 6070 kb)

Supplementary Fig. 6

Genetic components transmitted from the foundation parents Dan340, Mo17 and Huangzao4 to their respective derivatives. The foundation parents are charted before their respective derivatives (TIFF 6922 kb)

Supplementary Fig. 7

Tajima’s D calculated for the three sets of foundation parents and their derivatives, and the entire panel, respectively (TIFF 4226 kb)

Supplementary material 8 (XLSX 27 kb)

Supplementary material 9 (XLSX 12 kb)

Supplementary material 10 (XLSX 11 kb)

Supplementary material 11 (XLSX 10 kb)

Supplementary material 12 (XLSX 11 kb)

Supplementary material 13 (XLSX 15 kb)

Supplementary material 14 (XLSX 12 kb)

Supplementary material 15 (XLSX 12 kb)

Supplementary material 16 (XLSX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Hao, Z., Zhang, D. et al. Genetic properties of 240 maize inbred lines and identity-by-descent segments revealed by high-density SNP markers. Mol Breeding 35, 146 (2015). https://doi.org/10.1007/s11032-015-0344-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0344-z

Keywords

Navigation