Molecular Breeding

, Volume 34, Issue 4, pp 2049–2063 | Cite as

Downregulation of polyphenol oxidase in potato tubers redirects phenylpropanoid metabolism enhancing chlorogenate content and late blight resistance

  • Briardo Llorente
  • Mariana G. López
  • Fernando Carrari
  • Ramón Asís
  • Romina D. Di Paola Naranjo
  • Mirtha M. Flawiá
  • Guillermo D. Alonso
  • Fernando Bravo-Almonacid


Land plants synthesize phenolic compounds involved in plant defense against invading pathogens through the phenylpropanoid pathway. Although not considered as part of the phenylpropanoid pathway, plant polyphenol oxidases (PPOs) are enzymes that catalyze cresolase and catecholase reactions on several phenolic compounds. Here, transgenic potato (Solanum tuberosum) tubers with downregulated PPO genes (-PPO) were challenged with the oomycete pathogen Phytophthora infestans to investigate the interactions between PPO, phenylpropanoid metabolism, and disease resistance. We found that pathogen invasiveness was reduced in -PPO lines, while microscopic evidences suggested that the mechanism underlying the defense response involved the participation of phenolic compounds. Detailed metabolite-profiling analyses demonstrated that the concentration of metabolites related to the phenylpropanoid pathway and chlorogenate in particular was largely altered in PPO-downregulated tubers. Silencing of PPO caused a shift in metabolism from phenylpropanoid precursors to downstream phenylpropanoid products. The presented results suggest that downregulation of PPO redirects the phenylpropanoid metabolism leading to the accumulation of defensive phenolic compounds in the plant cells, consequently enhancing resistance to the pathogen. These results emphasize the importance of components acting in parallel to canonical metabolic pathway constituents in influencing plant metabolism and reveal new scenarios for modulating the levels of phenolics in crops.


Chlorogenate Host plant resistance Phenylpropanoid metabolism Phytophthora infestans Polyphenol oxidase Solanum tuberosum 



We thank A. Andreu and F. Mauch for kindly providing the P. infestans and P. infestans-GFP strains, respectively. We thank C. Cvitanich and E. Orlowska for valuable experimental advice, and also M. A. Phillips, M. E. Segretin, and D. Caparrós-Ruiz for their critical analysis of the manuscript. This work was funded by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias Exactas y Naturales (FCEyN), Universidad de Buenos Aires (UBA), and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Argentina. Additional support was received from Coimbra Group and Wood-Whelan research fellowships from the International Union of Biochemistry and Molecular Biology (IUBMB).

Supplementary material

11032_2014_162_MOESM1_ESM.pdf (2.3 mb)
Supplementary material 1 (PDF 2372 kb)


  1. Ah-Fong AM, Bormann-Chung CA, Judelson HS (2008) Optimization of transgene-mediated silencing in Phytophthora infestans and its association with small-interfering RNAs. Fungal Genet Biol 45:1197–1205PubMedCrossRefGoogle Scholar
  2. Andreu AB, Guevara MG, Wolski EA, Daleo GR, Caldiz DO (2006) Enhancement of natural disease resistance in potatoes by chemicals. Pest Manag Sci 62:162–170PubMedCrossRefGoogle Scholar
  3. Araji S et al (2014) Novel roles for the polyphenol oxidase enzyme in secondary metabolism and the regulation of cell death in walnut. Plant Physiol 164:1191–1203PubMedCentralPubMedCrossRefGoogle Scholar
  4. Balakumar T, Gayathri B, Anbudurai PR (1997) Oxidative stress injury in tomato plants induced by supplemental UV-B radiation. Biol Plant 39:215–221CrossRefGoogle Scholar
  5. Beerhues L, Kombrink E (1994) Primary structure and expression of mRNAs encoding basic chitinase and 1,3-beta-glucanase in potato. Plant Mol Biol 24:353–367PubMedCrossRefGoogle Scholar
  6. Ben Ahmed C, Ben Rouina B, Sensoy S, Boukhriss M, Ben Abdullah F (2009) Saline water irrigation effects on antioxidant defense system and proline accumulation in leaves and roots of field-grown olive. J Agric Food Chem 57:11484–11490PubMedCrossRefGoogle Scholar
  7. Ben Ahmed C, Ben Rouina B, Sensoy S, Boukhriss M, Ben Abdullah F (2010) Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. J Agric Food Chem 58:4216–4222PubMedCrossRefGoogle Scholar
  8. Bennett M, Gallagher M, Fagg J, Bestwick C, Paul T, Beale M, Mansfield J (1996) The hypersensitive reaction, membrane damage, and accumulation of autofluorescent phenolics in lettuce cells challenged by Bremia lactucae. Plant J 9:851–865CrossRefGoogle Scholar
  9. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  10. Buchter R, Stromberg A, Schmelzer E, Kombrink E (1997) Primary structure and expression of acidic (class II) chitinase in potato. Plant Mol Biol 35:749–761PubMedCrossRefGoogle Scholar
  11. Cabrefiga J, Montesinos E (2005) Analysis of aggressiveness of Erwinia amylovora using disease-dose and time relationships. Phytopathology 95:1430–1437PubMedCrossRefGoogle Scholar
  12. Caten CE, Jinks JL (1968) Spontaneous variability of single isolates of Phytophthora infestans. Can J Bot 46:329–348CrossRefGoogle Scholar
  13. Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8:884–896PubMedCrossRefGoogle Scholar
  14. Cho M, Moinuddin SGA, Helms GL, Hishiyama S, Eichinger D, Davin LB, Lewis ND (2003) (+)-Larreatricin hydroxylase, an enantio-specific polyphenol oxidase from the creosote bush (Larrea tridentata). Proc Natl Acad Sci USA 100:10641–10646PubMedCentralPubMedCrossRefGoogle Scholar
  15. Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15:167–175PubMedCrossRefGoogle Scholar
  16. Dixon RA, Achnine L, Kota P, Liu CJ, Reddy MS, Wang L (2002) The phenylpropanoid pathway and plant defence—a genomics perspective. Mol Plant Pathol 3:371–390PubMedCrossRefGoogle Scholar
  17. Do PT, Prudent M, Sulpice R, Causse M, Fernie AR (2010) The influence of fruit load on the tomato pericarp metabolome in a Solanum chmielewskii introgression line population. Plant Physiol 154:1128–1142PubMedCentralPubMedCrossRefGoogle Scholar
  18. Fernie AR, Roscher A, Ratcliffe RG, Kruger NJ (2001) Fructose 2,6-bisphosphate activates pyrophosphate: fructose-6-phosphate 1-phosphotransferase and increases triose phosphate to hexose phosphate cycling in heterotrophic cells. Planta 212:250–263PubMedCrossRefGoogle Scholar
  19. Ferrer JL, Austin MB, Stewart C Jr, Noel JP (2008) Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Phys Biochem 46:356–370CrossRefGoogle Scholar
  20. Fry W (2008) Phytophthora infestans: the plant (and R gene) destroyer. Mol Plant Pathol 9:385–402PubMedCrossRefGoogle Scholar
  21. Gachomo EW, Seufferheld MJ, Kotchoni SO (2010) Melanization of appressoria is critical for the pathogenicity of Diplocarpon rosae. Mol Biol Rep 37:3583–3591PubMedCrossRefGoogle Scholar
  22. Haas BJ et al (2009) Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461:393–398PubMedCrossRefGoogle Scholar
  23. Hakimi SM, Krohn BM, Stark DM (2006) Monsanto Technology LLC. Method of imparting disease resistance to plants by reducing polyphenol oxidase activities. United States Patent US 7,122,719 B2Google Scholar
  24. Halim VA, Eschen-Lippold L, Altmann S, Birschwilks M, Scheel D, Rosahl S (2007) Salicylic acid is important for basal defense of Solanum tuberosum against Phytophthora infestans. Mol Plant Microbe Interact 20:1346–1352PubMedCrossRefGoogle Scholar
  25. Hemaiswarya S, Soudaminikkutty R, Narasumani ML, Doble M (2011) Phenylpropanoids inhibit protofilament formation of Escherichia coli cell division protein FtsZ. J Med Microbiol 60:1317–1325PubMedCrossRefGoogle Scholar
  26. Hernandez-Romero D, Solano F, Sanchez-Amat A (2005) Polyphenol oxidase activity expression in Ralstonia solanacearum. Appl Environ Microbiol 71:6808–6815PubMedCentralPubMedCrossRefGoogle Scholar
  27. Hoegen E, Stromberg A, Pihlgren U, Kombrink E (2002) Primary structure and tissue-specific expression of the pathogenesis-related protein PR-1b in potatodagger. Mol Plant Pathol 3:329–345PubMedCrossRefGoogle Scholar
  28. Huckelhoven R (2007) Cell wall-associated mechanisms of disease resistance and susceptibility. Annu Rev Phytopathol 45:101–127PubMedCrossRefGoogle Scholar
  29. Jacobson ES (2000) Pathogenic roles for fungal melanins. Clin Microbiol Rev 13:708–717PubMedCentralPubMedCrossRefGoogle Scholar
  30. Judelson HS, Tooley PW (2000) Enhanced polymerase chain reaction methods for detecting and quantifying Phytophthora infestans in plants. Phytopathology 90:1112–1119PubMedCrossRefGoogle Scholar
  31. Judelson HS, Tani S, Narayan RD (2009) Metabolic adaptation of Phytophthora infestans during growth on leaves, tubers and artificial media. Mol Plant Pathol 10:843–855PubMedCrossRefGoogle Scholar
  32. Kroner A, Hamelin G, Andrivon D, Val F (2011) Quantitative resistance of potato to Pectobacterium atrosepticum and Phytophthora infestans: integrating PAMP-triggered response and pathogen growth. PLOS ONE 6:e23331PubMedCentralPubMedCrossRefGoogle Scholar
  33. La Camera S, Gouzerh G, Dhondt S, Hoffmann L, Fritig B, Legrand M, Heitz T (2004) Metabolic reprogramming in plant innate immunity: the contributions of phenylpropanoid and oxylipin pathways. Immunol Rev 198:267–284PubMedCrossRefGoogle Scholar
  34. Leiss KA, Maltese F, Choi YH, Verpoorte R, Klinkhamer PG (2009) Identification of chlorogenic acid as a resistance factor for thrips in chrysanthemum. Plant Physiol 150:1567–1575PubMedCentralPubMedCrossRefGoogle Scholar
  35. Li L, Steffens JC (2002) Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215:239–247PubMedCrossRefGoogle Scholar
  36. Liu Q, Paroo Z (2010) Biochemical principles of small RNA pathways. Annu Rev Biochem 79:295–319PubMedCrossRefGoogle Scholar
  37. Llorente B, Bravo-Almonacid F, Cvitanich C, Orlowska E, Torres HN, Flawia MM, Alonso GD (2010) A quantitative real-time PCR method for in planta monitoring of Phytophthora infestans growth. Lett Appl Microbiol 51:603–610PubMedCrossRefGoogle Scholar
  38. Llorente B et al (2011) Safety assessment of nonbrowning potatoes: opening the discussion about the relevance of substantial equivalence on next generation biotech crops. Plant Biotechnol J 9:136–150PubMedCrossRefGoogle Scholar
  39. Lou Z, Wang H, Zhu S, Ma C, Wang Z (2011) Antibacterial activity and mechanism of action of chlorogenic acid. J Food Sci 76:M398–M403PubMedCrossRefGoogle Scholar
  40. Lyr H (1962) Detoxification of heartwood toxins and chlorophenols by higher fungi. Nature 195:289–290CrossRefGoogle Scholar
  41. Maher EA, Bate NJ, Ni W, Elkind Y, Dixon RA, Lamb CJ (1994) Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. Proc Natl Acad Sci USA 91:7802–7806PubMedCentralPubMedCrossRefGoogle Scholar
  42. Martinez E, Duvnjak Z (2006) Enzymatic degradation of chlorogenic acid using a polyphenol oxidase preparation from the white-rot fungus Trametes versicolor ATCC 42530. Process Biochem 41:1835–1841CrossRefGoogle Scholar
  43. Mayer AM (2006) Polyphenol oxidases in plants and fungi: going places? A review. Phytochemistry 67:2318–2331PubMedCrossRefGoogle Scholar
  44. McCurdy RD, McGrath JJ, Mackay-Sim A (2008) Validation of the comparative quantification method of real-time PCR analysis and a cautionary tale of housekeeping gene selection. Gene Ther Mol Biol 12:15–24Google Scholar
  45. Montesano M, Hyytiainen H, Wettstein R, Palva ET (2003) A novel potato defence-related alcohol:NADP+ oxidoreductase induced in response to Erwinia carotovora. Plant Mol Biol 52:177–189PubMedCrossRefGoogle Scholar
  46. Montesano M, Brader G, Ponce de Leon I, Palva ET (2005) Multiple defence signals induced by Erwinia carotovora ssp. carotovora elicitors in potato. Mol Plant Pathol 6:541–549PubMedCrossRefGoogle Scholar
  47. Nakayama T et al (2000) Aureusidin synthase: a polyphenol oxidase homolog responsible for flower coloration. Science 290:1163–1166PubMedCrossRefGoogle Scholar
  48. Nicot N, Hausman JF, Hoffmann L, Evers D (2005) Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot 56:2907–2914PubMedCrossRefGoogle Scholar
  49. Niggeweg R, Michael AJ, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol 22:746–754PubMedCrossRefGoogle Scholar
  50. Nikitina VE, Vetchinkina EP, Ponomareva EG, Gogoleva YV (2010) Phenol oxidase activity in bacteria of the genus Azospirillum. Microbiology 79:327–333CrossRefGoogle Scholar
  51. Nowara D et al (2010) HIGS: host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis. Plant Cell 22:3130–3141PubMedCentralPubMedCrossRefGoogle Scholar
  52. Orlowska E, Fiil A, Kirk HG, Llorente B, Cvitanich C (2012) Differential gene induction in resistant and susceptible potato cultivars at early stages of infection by Phytophthora infestans. Plant Cell Rep 31:187–203PubMedCrossRefGoogle Scholar
  53. Ozcelik B, Kartal M, Orhan I (2011) Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm Biol 49:396–402PubMedCrossRefGoogle Scholar
  54. Payne G, Parks TD, Burkhart W, Dincher S, Ahl P, Metraux JP, Ryals J (1988) Isolation of the genomic clone for pathogenesis-related protein-1a from Nicotiana tabacum cv Xanthi-Nc. Plant Mol Biol 11:89–94PubMedCrossRefGoogle Scholar
  55. Payyavula RS, Navarre DA, Kuhl JC, Pantoja A, Pillai SS (2012) Differential effects of environment on potato phenylpropanoid and carotenoid expression. BMC Plant Biol 12:39PubMedCentralPubMedCrossRefGoogle Scholar
  56. Payyavula RS, Navarre DA, Kuhl J, Pantoja A (2013) Developmental effects on phenolic, flavonol, anthocyanin, and carotenoid metabolites and gene expression in potatoes. J Agric Food Chem 61:7357–7365PubMedCrossRefGoogle Scholar
  57. Pinero S, Rivera J, Romero D, Cevallos MA, Martinez A, Bolivar F, Gosset G (2007) Tyrosinase from Rhizobium etli is involved in nodulation efficiency and symbiosis-associated stress resistance. J Mol Microbiol Biotechnol 13:35–44PubMedCrossRefGoogle Scholar
  58. Richter C, Dirks ME, Gronover CS, Prüfer D, Moerschbacher BM (2012) Silencing and heterologous expression of ppo-2 indicate a specific function of a single polyphenol oxidase isoform in resistance of dandelion (Taraxacum officinale) against Pseudomonas syringae pv. tomato. Mol Plant Microbe Interact 25:200–210PubMedCrossRefGoogle Scholar
  59. Rivero RM, Ruiz JM, Garcia PC, Lopez-Lefebre LR, Sanchez E, Romero L (2001) Resistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants. Plant Sci 160:315–321PubMedCrossRefGoogle Scholar
  60. Rommens CM, Ye J, Richael C, Swords K (2006) Improving potato storage and processing characteristics through all-native DNA transformation. J Agric Food Chem 54:9882–9887PubMedCrossRefGoogle Scholar
  61. Shadle GL, Wesley SV, Korth KL, Chen F, Lamb C, Dixon RA (2003) Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of l-phenylalanine ammonia-lyase. Phytochemistry 64:153–161PubMedCrossRefGoogle Scholar
  62. Si-Ammour A, Mauch-Mani B, Mauch F (2003) Quantification of induced resistance against Phytophthora species expressing GFP as a vital marker: beta-aminobutyric acid but not BTH protects potato and Arabidopsis from infection. Mol Plant Pathol 4:237–248PubMedCrossRefGoogle Scholar
  63. Simon P (2003) Q-gene: processing quantitative real-time RT-PCR data. Bioinformatics 19:1439–1440PubMedCrossRefGoogle Scholar
  64. Steiner U, Oerke EC (2007) Localized melanization of appressoria is required for pathogenicity of Venturia inaequalis. Phytopathology 97:1222–1230PubMedCrossRefGoogle Scholar
  65. Steiner U, Schliemann W, Böhm H, Strack D (1999) Tyrosinase involved in betalain biosynthesis of higher plants. Planta 208:114–124CrossRefGoogle Scholar
  66. Sung WS, Lee DG (2010) Antifungal action of chlorogenic acid against pathogenic fungi, mediated by membrane disruption. Pure Appl Chem 82:219–226CrossRefGoogle Scholar
  67. Thipyapong P, Hunt MD, Steffens JC (2004a) Antisense downregulation of polyphenol oxidase results in enhanced disease susceptibility. Planta 220:105–117PubMedCrossRefGoogle Scholar
  68. Thipyapong P, Melkonian J, Wolfe DW, Steffens JC (2004b) Suppression of polyphenol oxidases increases stress tolerance in tomato. Plant Sci 167:693–703CrossRefGoogle Scholar
  69. Thygesen PW, Dry IB, Robinson SP (1995) Polyphenol oxidase in potato. A multigene family that exhibits differential expression patterns. Plant Physiol 109:525–531PubMedCentralPubMedCrossRefGoogle Scholar
  70. VanEtten HD, Mansfield JW, Bailey JA, Farmer EE (1994) Two classes of plant antibiotics: phytoalexins versus “Phytoanticipins”. Plant Cell 6:1191–1192PubMedCentralPubMedCrossRefGoogle Scholar
  71. Villarino M, Sandín-España P, Melgarejo P, De Cal A (2011) High chlorogenic and neochlorogenic acid levels in immature peaches reduce Monilinia laxa infection by interfering with fungal melanin biosynthesis. J Agric Food Chem 59:3205–3213PubMedCrossRefGoogle Scholar
  72. Vogt T (2010) Phenylpropanoid biosynthesis. Mol Plant 3:2–20PubMedCrossRefGoogle Scholar
  73. Whisson SC, Avrova AO, Van West P, Jones JT (2005) A method for double-stranded RNA-mediated transient gene silencing in Phytophthora infestans. Mol Plant Pathol 6:153–163PubMedCrossRefGoogle Scholar
  74. Yang HY, Chen CW (2009) Extracellular and intracellular polyphenol oxidases cause opposite effects on sensitivity of Streptomyces to phenolics: a case of double-edged sword. PLOS ONE 4:e7462PubMedCentralPubMedCrossRefGoogle Scholar
  75. Yao K, De Luca V, Brisson N (1995) Creation of a metabolic sink for tryptophan alters the phenylpropanoid pathway and the susceptibility of potato to Phytophthora infestans. Plant Cell 7:1787–1799PubMedCentralPubMedCrossRefGoogle Scholar
  76. Yu D, Liu Y, Fan B, Klessig DF, Chen Z (1997) Is the high basal level of salicylic acid important for disease resistance in potato? Plant Physiol 115:343–349PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Briardo Llorente
    • 1
    • 2
  • Mariana G. López
    • 3
  • Fernando Carrari
    • 3
  • Ramón Asís
    • 4
  • Romina D. Di Paola Naranjo
    • 4
  • Mirtha M. Flawiá
    • 2
    • 5
  • Guillermo D. Alonso
    • 2
    • 5
  • Fernando Bravo-Almonacid
    • 2
    • 6
  1. 1.Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UBBarcelonaSpain
  2. 2.Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr. Hector N. Torres (INGEBI)Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Instituto de BiotecnologíaInstituto Nacional de Tecnología AgrícolaCastelarArgentina
  4. 4.Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, CIBICI-CONICETUniversidad Nacional de CórdobaCórdobaArgentina
  5. 5.Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  6. 6.Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesBernalArgentina

Personalised recommendations