Molecular Breeding

, Volume 34, Issue 3, pp 1475–1495 | Cite as

Evaluation of juvenile drought stress tolerance and genotyping by sequencing with wild barley introgression lines

  • Nora Honsdorf
  • Timothy John March
  • Andrea Hecht
  • Jason Eglinton
  • Klaus Pillen


Drought is a major stress which can seriously limit yield in many crops including barley. Wild barley introgression lines (ILs) like the S42IL library may enhance drought stress tolerance of barley cultivars through the introduction of exotic alleles. The S42IL library was already characterized with 636 Illumina SNPs. New approaches like genotyping by sequencing (GBS) are available for barley to enhance the characterization of ILs. We generated an improved genetic map of the S42IL library, consisting of 4,201 SNPs by adding GBS data. The new map with a total length of 989.2 cM confirmed the extent of wild barley introgressions. Adding GBS data increased the resolution of the S42IL map tenfold from 0.4 to 4.2 markers/cM. This may assist to select possible candidate genes that improve drought tolerance. In four greenhouse experiments, juvenile drought stress response of 52 barley S42ILs was tested to identify quantitative trait loci (QTL). Thirteen S42ILs showed effects for plant biomass and leaf senescence. Subsequently, two verification experiments were conducted with these S42ILs. Nine out of eleven QTL were verified, and 22 additional QTL were detected. For 21 QTL, the Hsp allele increased trait performance, indicating the value of wild barley introgressions. For example, S42IL-107 and S42IL-123 produced more biomass under drought. Two different water-saving strategies were observed. S42IL-143 and S42IL-129 both revealed increased relative water content under drought. While S42IL-143 reduced biomass under drought, S42IL-129 maintained a high biomass production. We recommend using S42IL-107, S42IL-123 and S42IL-129 in barley breeding programs to enhance drought tolerance.


Barley Hordeum vulgare spp. spontaneum Introgression lines Drought tolerance Genotyping by sequencing (GBS) 



We are grateful to the team of Australian Genome Research Facility Ltd., St. Lucia, QLD, Australia, for carrying out the sequencing of the S42ILs. This work was supported by the Interdisciplinary Centre for Crop Plant Research (IZN), Halle (Saale) and by the Joint Research Co-operation Scheme, of the German Academic Exchange Service (DAAD, ID 54391967) and the Group of Eight, Australia.

Supplementary material

11032_2014_131_MOESM1_ESM.xlsx (1.3 mb)
Supplementary material 1 (XLSX 1371 kb)


  1. Baum M, Grando S, Backes G et al (2003) QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross “Arta” xH. spontaneum41-1. Theor Appl Genet 107:1215–1225. doi: 10.1007/s00122-003-1357-2 PubMedCrossRefGoogle Scholar
  2. Becker H (2011) Pflanzenzüchtung, 2nd edn. Verlag Eugen Ulmer, StuttgartGoogle Scholar
  3. Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168. doi: 10.1071/AR05069 CrossRefGoogle Scholar
  4. Borràs-Gelonch G, Slafer GA, Casas AM et al (2010) Genetic control of pre-heading phases and other traits related to development in a double-haploid barley (Hordeum vulgare L.) population. Field Crops Res 119:36–47. doi: 10.1016/j.fcr.2010.06.013 CrossRefGoogle Scholar
  5. Campbell SA, Close TJ (1997) Dehydrins: genes, proteins, and associations with phenotypic traits. New Phytol 137:61–74. doi: 10.1046/j.1469-8137.1997.00831.x CrossRefGoogle Scholar
  6. Close TJ, Bhat PR, Lonardi S et al (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genom 10:13. doi: 10.1186/1471-2164-10-582 CrossRefGoogle Scholar
  7. Deng W, Nickle DC, Learn GH et al (2007) ViroBLAST: a stand-alone BLAST web server for flexible queries of multiple databases and user’s datasets. Bioinformatics 23:2334–2336. doi: 10.1093/bioinformatics/btm331 PubMedCrossRefGoogle Scholar
  8. Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. doi: 10.1371/journal.pone.0019379
  9. Fischer RA, Maurer R (1978) Drought resistance in spring wheat cultivars. 1. Grain yield responses. Aust J Agric Res 29:897–912. doi: 10.1071/ar9780897 CrossRefGoogle Scholar
  10. Guo P, Baum M, Varshney RK et al (2008) QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica 163:203–214. doi: 10.1007/s10681-007-9629-6 CrossRefGoogle Scholar
  11. Gyenis L, Yun SJ, Smith KP et al (2007) Genetic architecture of quantitative trait loci associated with morphological and agronomic trait differences in a wild by cultivated barley cross. Genome 50:714–723. doi: 10.1139/G07-054 PubMedCrossRefGoogle Scholar
  12. Hafid ElR, Smith DH, Karrou M, Samir K (1998) Root and shoot growth, water use and water use efficiency of spring durum wheat under early-season drought. Agronomie 18:181–195. doi: 10.1051/agro:19980302 CrossRefGoogle Scholar
  13. Hoffmann A, Maurer A, Pillen K (2012) Detection of nitrogen deficiency QTL in juvenile wild barley introgression lines growing in a hydroponic system. BMC Genet. doi: 10.1186/1471-2156-13-88 PubMedPubMedCentralGoogle Scholar
  14. Honsdorf N, March TJ, Berger B, Tester M, Pillen K (2014) High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS ONE 9(5):e97047. doi: 10.1371/journal.pone.0097047 PubMedCrossRefPubMedCentralGoogle Scholar
  15. Institute SAS (2008) The SAS enterprise guide for Windows, release 4.2. SAS Institute, CaryGoogle Scholar
  16. Jana S, Wilen RW (2005) Breeding for abiotic stress tolerance in barley. In: Ashraf M, Harris PJC (eds) Abiotic stresses: plant resistance through breeding and molecular approaches. Food Products PressGoogle Scholar
  17. Karsai I, Meszaros K, Szucs P et al (2006) The influence of photoperiod on the Vrn-H2 locus (4H) which is a major determinant of plant development and reproductive fitness traits in a facultative X winter barley (Hordeum vulgare L.) mapping population. Plant Breed 125:468–472. doi: 10.1111/j.1439-0523.2006.01266.x CrossRefGoogle Scholar
  18. Kumagai E, Araki T, Kubota F (2009) Correlation of chlorophyll meter readings with gas exchange and chlorophyll fluorescence in flag leaves of rice (Oryza sativa L.) plants. Plant Prod Sci 12:50–53CrossRefGoogle Scholar
  19. Lakew B, Eglinton J, Henry RJ et al (2011) The potential contribution of wild barley (Hordeum vulgare ssp. spontaneum) germplasm to drought tolerance of cultivated barley (H. vulgare ssp. vulgare). Field Crops Res 120:161–168. doi: 10.1016/j.fcr.2010.09.011 CrossRefGoogle Scholar
  20. Lakew B, Henry RJ, Eglinton J et al (2013) SSR analysis of introgression of drought tolerance from the genome of Hordeum spontaneum into cultivated barley (Hordeum vulgare ssp. vulgare). Euphytica 191:231–243. doi: 10.1007/s10681-012-0795-9 CrossRefGoogle Scholar
  21. Laurie DA, Pratchett N, Bezant JH, Snape JW (1995) RFLP mapping of 5 major genes and 8 quantitative trait loci controlling flowering time in a winter x spring barley (Hordeum vulgare L.) cross. Genome 38:575–585Google Scholar
  22. Li JZ, Huang XQ, Heinrichs F et al (2006) Analysis of QTLs for yield components, agronomic traits, and disease resistance in an advanced backcross population of spring barley. Genome 49:454–466. doi: 10.1139/G05-128 PubMedCrossRefGoogle Scholar
  23. López-Castañeda C, Richards RA (1994) Variation in temperate cereals in rain-fed environments II. Phasic development and growth. Field Crops Res 37:63–75. doi: 10.1016/0378-4290(94)90082-5 CrossRefGoogle Scholar
  24. Lu ZJ, Neumann PM (1998) Water-stressed maize, barley and rice seedlings show species diversity in mechanisms of leaf growth inhibition. J Exp Bot 49:1945–1952. doi: 10.1093/jexbot/49.329.1945 CrossRefGoogle Scholar
  25. Lu F, Lipka AE, Glaubitz J et al (2013) Switchgrass genomic diversity, ploidy, and evolution: novel insights from a network-based SNP discovery protocol. PLoS Genet. doi: 10.1371/journal.pgen.1003215 Google Scholar
  26. Ma BL, Morrison MJ, Voldeng HD (1995) Leaf greenness and photosynthetic rates in soybean. Crop Sci 35:1411–1414CrossRefGoogle Scholar
  27. Mascher M, Wu S, Amand PS et al (2013) Application of genotyping-by-sequencing on semiconductor sequencing platforms: a comparison of genetic and reference-based marker ordering in barley. PLoS ONE 8:e76925. doi: 10.1371/journal.pone.0076925 PubMedCrossRefPubMedCentralGoogle Scholar
  28. Mayer KFX, Waugh R, Brown JWS et al (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716. doi: 10.1038/nature11543 PubMedGoogle Scholar
  29. Muñoz-Amatriaín M, Moscou MJ, Bhat PR et al (2011) An improved consensus linkage map of barley based on flow-sorted chromosomes and single nucleotide polymorphism markers. Plant Genome 4:238–249. doi: 10.3835/plantgenome2011.08.0023 CrossRefGoogle Scholar
  30. Pennisi E (2008) Plant genetics: the blue revolution, drop by drop, gene by gene. Science 320:171–173. doi: 10.1126/science.320.5873.171 PubMedCrossRefGoogle Scholar
  31. Pillen K, Zacharias A, Leon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107:340–352. doi: 10.1007/s00122-003-1253-9 PubMedCrossRefGoogle Scholar
  32. Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE. doi: 10.1371/journal.pone.0032253 Google Scholar
  33. Rivero RM, Kojima M, Gepstein A et al (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104:19631–19636. doi: 10.1073/pnas.0709453104 PubMedCrossRefPubMedCentralGoogle Scholar
  34. Saal B, von Korff M, Leon J, Pillen K (2011) Advanced-backcross QTL analysis in spring barley: IV. Localization of QTL x nitrogen interaction effects for yield-related traits. Euphytica 177:223–239. doi: 10.1007/s10681-010-0252-6 CrossRefGoogle Scholar
  35. Schmalenbach I, Pillen K (2009) Detection and verification of malting quality QTLs using wild barley introgression lines. Theor Appl Genet 118:1411–1427. doi: 10.1007/s00122-009-0991-8 PubMedCrossRefPubMedCentralGoogle Scholar
  36. Schmalenbach I, Koerber N, Pillen K (2008) Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust. Theor Appl Genet 117:1093–1106. doi: 10.1007/s00122-008-0847-7 PubMedCrossRefGoogle Scholar
  37. Schmalenbach I, Leon J, Pillen K (2009) Identification and verification of QTLs for agronomic traits using wild barley introgression lines. Theor Appl Genet 118:483–497. doi: 10.1007/s00122-008-0915-z PubMedCrossRefGoogle Scholar
  38. Schmalenbach I, March TJ, Bringezu T et al (2011) High-resolution genotyping of wild barley introgression lines and fine-mapping of the threshability locusthresh-1 using the Illumina GoldenGate Assay. G3 1:187–196. doi: 10.1534/g3.111.000182
  39. Schnaithmann F, Pillen K (2013) Detection of exotic QTLs controlling nitrogen stress tolerance among wild barley introgression lines. Euphytica 189:67–88. doi: 10.1007/s10681-012-0711-3 CrossRefGoogle Scholar
  40. Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203. doi: 10.1007/s001220050114 PubMedCrossRefGoogle Scholar
  41. Tester M, Langridge P (2010) Breeding technologies to increase crop production in a changing world. Science 327:818–822. doi: 10.1126/science.1183700 PubMedCrossRefGoogle Scholar
  42. Teulat B, Monneveux P, Wery J et al (1997) Relationships between relative water content and growth parameters under water stress in barley: a QTL study. New Phytol 137:99–107CrossRefGoogle Scholar
  43. Teulat B, Zoumarou-Wallis N, Rotter B et al (2003) QTL for relative water content in field-grown barley and their stability across Mediterranean environments. Theor Appl Genet 108:181–188. doi: 10.1007/s00122-003-1417-7 PubMedCrossRefGoogle Scholar
  44. Tyagi K, Park MR, Lee HJ et al (2011a) Fertile crescent region as source of drought tolerance at early stage of plant growth of wild barley (Hordeum vulgare L. ssp. spontaneum). Pak J Bot 43:475–486Google Scholar
  45. Tyagi K, Park MR, Lee HJ et al (2011b) Diversity for seedling vigor in wild barley (Hordeum vulgare L. subsp spontaneum) Germplasm. Pak J Bot 43:2167–2173Google Scholar
  46. Ullrich SE (2011) Significance, adaptation, production, and trade of barley. In: Ullrich SE (ed) Barley: production, improvement, and uses, 1st edn. Blackwell, New York, pp 3–13CrossRefGoogle Scholar
  47. von Korff M, Wang H, Leon J, Pillen K (2004) Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor Appl Genet 109:1736–1745. doi: 10.1007/s00122-004-1818-2 CrossRefGoogle Scholar
  48. von Korff M, Wang H, Leon J, Pillen K (2005) AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley. Theor Appl Genet 111:583–590. doi: 10.1007/s00122-005-2049-x CrossRefGoogle Scholar
  49. von Korff M, Wang H, Leon J, Pillen K (2006) AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet 112:1221–1231. doi: 10.1007/s00122-006-0223-4 CrossRefGoogle Scholar
  50. von Korff M, Wang H, Leon J, Pillen K (2008) AB-QTL analysis in spring barley: III. Identification of exotic alleles for the improvement of malting quality in spring barley (H. vulgare ssp. spontaneum). Mol Breed 21:81–93. doi: 10.1007/s11032-007-9110-1 CrossRefGoogle Scholar
  51. von Korff M, Leon J, Pillen K (2010) Detection of epistatic interactions between exotic alleles introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet 121:1455–1464. doi: 10.1007/s00122-010-1401-y CrossRefGoogle Scholar
  52. Wang G, Schmalenbach I, von Korff M et al (2010) Association of barley photoperiod and vernalization genes with QTLs for flowering time and agronomic traits in a BC(2)DH population and a set of wild barley introgression lines. Theor Appl Genet 120:1559–1574. doi: 10.1007/s00122-010-1276-y PubMedCrossRefPubMedCentralGoogle Scholar
  53. Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989. doi: 10.1038/35103589 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Nora Honsdorf
    • 1
    • 2
  • Timothy John March
    • 3
  • Andrea Hecht
    • 1
  • Jason Eglinton
    • 3
  • Klaus Pillen
    • 1
  1. 1.Chair of Plant Breeding, Institute of Agricultural and Nutritional SciencesMartin-Luther University of Halle-WittenbergHalle (Saale)Germany
  2. 2.Interdisciplinary Center for Crop Plant Research (IZN)Halle (Saale)Germany
  3. 3.School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondAustralia

Personalised recommendations