Molecular Breeding

, Volume 34, Issue 3, pp 1281–1300 | Cite as

Construction of dense linkage maps “on the fly” using early generation wheat breeding populations

  • J. T. Eckard
  • J. L. Gonzalez-Hernandez
  • S. Chao
  • P. St Amand
  • G. Bai


In plant species, construction of framework linkage maps to facilitate quantitative trait loci mapping and molecular breeding has been confined to experimental mapping populations. However, development and evaluation of these populations is detached from breeding efforts for cultivar development. In this study, we demonstrate that dense and reliable linkage maps can be constructed using extant breeding populations derived from a large number of crosses, thus eliminating the need for extraneous population development. Using 565 segregating F1 progeny from 28 four-way cross breeding populations, a linkage map of the hexaploid wheat genome consisting of 3,785 single nucleotide polymorphism (SNP) loci and 22 simple sequence repeat loci was developed. Map estimation was facilitated by application of mapping algorithms for general pedigrees implemented in the software package CRI-MAP. The developed linkage maps showed high rank-order concordance with a SNP consensus map developed from seven mapping studies. Therefore, the linkage mapping methodology presented here represents a resource efficient approach for plant breeding programs that enables development of dense linkage maps “on the fly” to support molecular breeding efforts.


Linkage mapping Consensus map Pedigree analysis Wheat breeding High-throughput genotyping 



The authors acknowledge support from the US Wheat and Barley Scab Initiative under ARS Agreement No: 59-0200-3-005 to J.L.G.H. and by the South Dakota Agricultural Experimental Station.

Supplementary material

11032_2014_116_MOESM1_ESM.xlsx (210 kb)
Supplementary material 1 (XLSX 209 kb)


  1. Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, Hettner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor Appl Genet 113(8):1409–1420PubMedCrossRefGoogle Scholar
  2. Akhunov E, Chao S, Catana V, See D, Brown-Guedira G, Akhunova A, Dubcovsky J, Cavanagh C, Hayden M (2011) New tools for wheat genetics and breeding: genome-wide analysis of SNP variation. In: McIntosh R (ed) Proceedings of the BGRI 2011 tech. work. Borlaug Global Rust Initiative, St. Paul, MN, pp 92–97Google Scholar
  3. Allen AM, Barker GLA, Berry ST, Coghill JA, Gwilliam R, Kirby S, Robinson P, Brenchley RC, D’Amore R, McKenzie N, Waite D, Hall A, Bevan M, Hall N, Edwards KJ (2011) Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant Biotechnol J 9(9):1086–1099PubMedCrossRefGoogle Scholar
  4. Bandillo N, Raghavan C, Muyco P, Sevilla MAL, Lobina IT, Dilla-Ermita CJ, Tung C-W, McCouch S, Thomson M, Mauleon R, Singh RK, Gregorio G, Rodoña E, Leung H (2013) Multi-parent advanced generation inter-cross (MAGIC) populations in rice: progress and potential for genetics research and breeding. Rice 6:11PubMedCrossRefGoogle Scholar
  5. Beavis WD (1998) QTL analyses: power, precision, and accuracy. In: Paterson AH (ed) Molecular dissection of complex trait. CRC Press, Boca Raton, pp 145–162Google Scholar
  6. Bowers JE, Bachlava E, Brunick RL, Rieseberg LH, Knapp SJ, Burke JM (2012) Development of a 10,000 locus genetic map of the sunflower genome based on multiple crosses. G3 2(7):721–729PubMedCrossRefPubMedCentralGoogle Scholar
  7. Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11(2):215–221PubMedCrossRefGoogle Scholar
  8. Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kianian S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, Lopez da Silva M, Bockelman H, Talber L, Anderson J, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morell M, Sorrells ME, Hayden MJ, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci USA 110(20):8057–8062PubMedCrossRefPubMedCentralGoogle Scholar
  9. Cheema J, Dicks J (2009) Computational approaches and software tools for genetic linkage map estimation in plants. Brief Bioinform 10(6):595–608PubMedCrossRefGoogle Scholar
  10. Collard B, Mace E, McPhail M et al (2009) How accurate are the marker orders in crop linkage maps generated from large marker datasets? Crop Pasure Sci 52:362–372CrossRefGoogle Scholar
  11. Crepieux S, Lebreton C, Servin B, Charmet G (2004) Quantitative trait loci (QTL) detection in multicross inbred designs: recovering QTL identical-by-descent status information from marker data. Genetics 168(3):1737–1749PubMedCrossRefPubMedCentralGoogle Scholar
  12. Crepieux S, Lebreton C, Flament P, Charmet G (2005) Application of a new IBD-based QTL mapping method to common wheat breeding population: analysis of kernel hardness and dough strength. Theor Appl Genet 111(7):1409–1419PubMedCrossRefGoogle Scholar
  13. Deschamps S, Llaca V, May GD (2012) Genotyping-by-sequencing in plants. Biology (Basel) 1(3):460–483Google Scholar
  14. Doerge RW (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3(1):43–52PubMedCrossRefGoogle Scholar
  15. Goldstein DR, Zhao H, Speed TP (1997) The effects of genotyping errors and interference on estimation of genetic distance. Hum Hered 47:86–100PubMedCrossRefGoogle Scholar
  16. Green P, Falls K, Crooks S (1990) Documentation for CRI-MAP, version 2.4. (Accessed 7 Jan 2014)
  17. Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10(2):156–161PubMedCrossRefGoogle Scholar
  18. Huang BE, George AW, Forrest KL, Kilian A, Hayden MJ, Morell MK, Cavanagh CR (2012) A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol J 10(7):826–839PubMedCrossRefGoogle Scholar
  19. Jansen RC, Jannink JL, Beavis WD (2003) Mapping quantitative trait loci in plant breeding populations: use of parental haplotype sharing. Crop Sci 43(3):829–834CrossRefGoogle Scholar
  20. Karakousis A, Langridge P (2003) A high-throughput plant DNA extraction method for marker analysis. Plant Mol Biol Rep 21(1):95CrossRefGoogle Scholar
  21. Kilian A, Huttner E, Wenzl P, Jaccoud D, Carling J, Caig V, Evers M, Heller-Uszynska K, Uszynski G, Cayla C, Patarapuwadol S, Xia L, Yang S, Thomson B (2003) The fast and the cheap: SNP and DArT-based whole genome profiling for crop improvement. In: Proceedings of the international congress in wake double helix from green revolution to gene revolution, Avenue Media, Bologna, Italy, pp 443–461Google Scholar
  22. Lander ES, Green P (1987) Construction of multilocus genetic linkage maps in humans. Proc Natl Acad Sci USA 84(8):2363–2367PubMedCrossRefPubMedCentralGoogle Scholar
  23. Morrell PL, Buckler ES, Ross-Ibarra J (2012) Crop genomics: advances and applications. Nat Rev Genet 13(2):85–96Google Scholar
  24. Qin H, Guo W, Zhang Y-M, Zhang T (2008) QTL mapping of yield and fiber traits based on a four-way cross population in Gossypium hirsutum L. Theor Appl Genet 117(6):883–894PubMedCrossRefGoogle Scholar
  25. Rakshit S, Rakshit A, Patil JV (2012) Multiparent intercross populations in analysis of quantitative traits. J Genet 91(1):111–117PubMedCrossRefGoogle Scholar
  26. Rosyara UR, Gonzalez-Hernandez JL, Glover KD, Gedye KR, Stein JM (2009) Family-based mapping of quantitative trait loci in plant breeding populations with resistance to Fusarium head blight in wheat as an illustration. Theor Appl Genet 118(8):1617–1631PubMedCrossRefGoogle Scholar
  27. Trebbi D, Maccaferri M, Giuliani S, Sorensen A, Sanguineti MC, Massi A, Tuberosa R (2008) Development of a multi-parental (four-way cross) mapping population for multi-allelic QTL analysis in durum wheat. In: Appels R, Eastwood R, Lagudah E et al (eds) 11th proceedings of the international wheat genetics symposium. Sydney University Press, Brisbane, pp 14–15Google Scholar
  28. van Ooijen JW (2006) JoinMap® 4.0: software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, WageningenGoogle Scholar
  29. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78PubMedCrossRefGoogle Scholar
  30. Weaver R, Helms C, Mishra SK, Donis-Keller H (1992) Software for analysis and manipulation of genetic linkage data. Am J Hum Genet 50(6):1267–1274PubMedPubMedCentralGoogle Scholar
  31. Wu Y, Close TJ, Lonardi S (2008) On the accurate construction of consensus genetic maps. Comput Syst Bioinform Conf 7:285–296Google Scholar
  32. Würschum T (2012) Mapping QTL for agronomic traits in breeding populations. Theor Appl Genet 125(2):201–210PubMedCrossRefGoogle Scholar
  33. Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178(1):539–551PubMedCrossRefPubMedCentralGoogle Scholar
  34. Zhang X, Bai G, Bockus W, Ji X, Pan H (2012) Quantitative trait loci for fusarium head blight resistance in U.S. Hard winter wheat cultivar Heyne. Crop Sci 52(3):1187–1194CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • J. T. Eckard
    • 1
  • J. L. Gonzalez-Hernandez
    • 1
  • S. Chao
    • 2
  • P. St Amand
    • 3
  • G. Bai
    • 3
  1. 1.Department of Plant ScienceSouth Dakota State UniversityBrookingsUSA
  2. 2.USDA, Agricultural Research ServiceFargoUSA
  3. 3.USDA, Agricultural Research ServiceManhattanUSA

Personalised recommendations