Skip to main content
Log in

Wx gene in diploid wheat: molecular characterization of five novel alleles from einkorn (Triticum monococcum L. ssp. monococcum) and T. urartu

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The Wx gene encodes the granule-bound starch synthase I or waxy protein, which is the sole enzyme responsible for amylose synthesis in wheat seeds. Triticum urartu and einkorn (T. monococcum L. ssp. monococcum), which are related to the A genome of bread wheat, could be important sources of variation for this gene. This study evaluated the Wx gene variability in 52 accessions of these species and compared their nucleotide sequences with the Wx-A1a allele of bread wheat. The level of polymorphism found was high, although not distributed equally between the two species. Five different alleles were found in T. urartu, of which four were novel (Wx-A u 1b, -A u 1c, -A u 1d and -A u 1e). All einkorn accessions had the same allele, which was also novel and was named Wx-A m 1a. A comparison between the proteins deduced from the novel alleles and the Wx-A1a protein showed that there were up to 33 amino acid changes in both the transit peptide and the mature protein. These results showed that these species, especially T. urartu, are a potential source of novel waxy variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ainsworth C, Clark J, Balsdon J (1993) Expression, organisation and structure of the genes encoding the waxy protein (granule-bound starch synthase) in wheat. Plant Mol Biol 22:67–82

    Article  PubMed  CAS  Google Scholar 

  • Baldwin PM (2001) Starch granule-associated protein and polypeptides: a review. Starch/Stärcke 53:475–503

    Article  Google Scholar 

  • Brandolini A, Vaccino P, Boggini G, Özkan H, Kilian B, Salamini F (2006) Quantification of genetic relationships among A genomes of wheats. Genome 49:297–305

    Article  PubMed  CAS  Google Scholar 

  • Caballero L, Bancel E, Debiton C, Branlard G (2008) Granule-bound starch synthase (GBSS) diversity of ancient wheat and related species. Plant Breed 127:548–553

    Article  CAS  Google Scholar 

  • Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD (1989) RFLP-based genetic maps of wheat homoeologous group 7 chromosomes. Theor Appl Genet 78:495–504

    Article  PubMed  CAS  Google Scholar 

  • Dvorak J, McGuire PE, Cassidy B (1988) Apparent source of the A genomes of wheats inferred from polymorphism in abundance and restriction fragment length of repeated nucleotide sequences. Genome 30:680–689

    Article  CAS  Google Scholar 

  • Dvorak J, Pd Terlizzi, Zhang H-B, Resta P (1993) The evolution of polyploid wheats: identification of the A genome donor species. Genome 36:21–31

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on the wild side. Trends Genet 24:24–32

    Article  PubMed  CAS  Google Scholar 

  • Guzmán C, Alvarez JB (2012) Molecular characterization of a novel waxy allele (Wx-A u 1a) from Triticum urartu Thum. ex Gandil. Genet Resour Crop Evol 59:971–979

    Article  Google Scholar 

  • Guzmán C, Caballero L, Alvarez JB (2009) Variation in Spanish cultivated einkorn wheat (Triticum monococcum L. ssp. monococcum) as determined by morphological traits and waxy proteins. Genet Resour Crop Evol 56:601–604

    Article  Google Scholar 

  • Guzmán C, Caballero L, Moral A, Alvarez JB (2010) Genetic variation for waxy proteins and amylose content in Spanish spelt wheat (Triticum spelta L.). Genet Resour Crop Evol 57:721–725

    Article  Google Scholar 

  • Guzmán C, Caballero L, Alvarez JB (2011) Molecular characterisation of the Wx-B1 allelic variants identified in cultivated emmer wheat and comparison with those of durum wheat. Mol Breed 28:403–411

    Article  Google Scholar 

  • Guzmán C, Caballero L, Martín LM, Alvarez JB (2012) Waxy genes from spelt wheat: new alleles for modern wheat breeding and new phylogenetic inferences about the origin of this species. Ann Bot 110:1161–1171

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang XQ, Brûlé-Babel A (2012) Sequence diversity, haplotype analysis, association mapping and functional marker development in the waxy and starch synthase IIa genes for grain-yield-related traits in hexaploid wheat (Triticum aestivum L.). Mol Breed 30:627–635

    Article  CAS  Google Scholar 

  • Kiribuchi-Otobe C, Nagamine T, Yanagisawa T, Ohnishi M, Yamaguchi I (1997) Production of hexaploid wheats with waxy endosperm character. Cereal Chem 74:72–74

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Leterrier M, Holappa LD, Broglie KE, Beckles DM (2008) Cloning, characterisation and comparative analysis of a starch synthase IV gene in wheat: functional and evolutionary implications. BMC Plant Biol 8:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Li W, Gao Z, Xiao W, Wei YM, Liu YX, Chen GY, Pu ZE, Chen HP, Zheng YL (2012) Molecular diversity of restriction enzyme sites, Indels and upstream open reading frames (uORFs) of 5′ untranslated regions (UTRs) of Waxy genes in Triticum L. and Aegilops L. species. Genet Resour Crop Evol 59:1625–1647

    Article  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Liu YX, Li W, Wei YM, Chen GY, Zheng YL (2009) Molecular characterization of the waxy gene in einkorn wheat. J Plant Sci 4:114–121

    Article  CAS  Google Scholar 

  • Mason-Gamer RJ, Weil CF, Kellogg EA (1998) Granule-bound starch synthase: structure, function, and phylogenetic utility. Mol Biol Evol 15:1658–1673

    Article  PubMed  CAS  Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC (2013) Catalogue of gene symbols for wheat. http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/2013/GeneSymbol.pdf. Accessed 22 Apr 2014

  • Miller TE, Reader SM (1980) Variation in the meiotic chromosome pairing of hybrids between hexaploid and diploid wheats. Cereal Res Commun 8:477–483

    Google Scholar 

  • Miura H, Sugawara A (1996) Dosage effects of the three Wx genes on amylose synthesis in wheat endosperm. Theor Appl Genet 93:1066–1070

    Article  PubMed  CAS  Google Scholar 

  • Monari AM, Simeone MC, Urbano M, Margiotta B, Lafiandra D (2005) Molecular characterization of new waxy mutants identified in bread and durum wheat. Theor Appl Genet 110:1481–1489

    Article  PubMed  CAS  Google Scholar 

  • Murai J, Taira T, Ohta D (1999) Isolation and characterization of the three Waxy genes encoding the granule-bound starch synthase in hexaploid wheat. Gene 234:71–79

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Yamamori M, Hirano H, Hidaka S, Nagamine T (1995) Production of waxy (amylose-free) wheats. Mol Gen Genet 248:253–259

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Ortega R, Alvarez JB, Guzmán C (2014) Characterization of the Wx gene in diploid Aegilops species and its potential use in wheat breeding. Genet Resour Crop Evol 61:369–382

    Article  CAS  Google Scholar 

  • Rawat N, Sehgal SK, Joshi A, Rothe N, Wilson DL, McGraw N, Vadlani PV, Li W, Gill BS (2012) A diploid wheat TILLING resource for wheat functional genomics. BMC Plant Biol 12:205

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Quijano M, Vázquez JF, Carrillo JM (2004) Waxy proteins and amylose content in diploid Triticeae species with genomes A, S and D. Plant Breed 123:294–296

    Article  CAS  Google Scholar 

  • Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC (2012) SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res 40(W1):W452–W457

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81

    Article  PubMed  CAS  Google Scholar 

  • Stacey J, Isaac P (1994) Isolation of DNA from plants. In: Isaac PG (ed) Methods in molecular biology: protocols for nucleic acid analysis by non-radiactive probes. Humana Press, Totawa, pp 9–15

    Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101:11030–11035

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Urbano M, Margiotta B, Colaprico G, Lafiandra D (2002) Waxy proteins in diploid, tetraploid and hexaploid wheats. Plant Breed 121:465–469

    Article  CAS  Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Weber JL, Vladutiu GD, Tarnopolsky MA (2011) Six novel mutations in the myophosphorylase gene in patients with McArdle disease and a family with pseudo-dominant inheritance pattern. Mol Genet Metab 104:587–591

    Article  PubMed  CAS  Google Scholar 

  • Yamamori M (2009) Amylose content and starch properties generated by five variant Wx alleles for granule-bound starch synthase in common wheat (Triticum aestivum L.). Euphytica 165:607–614

    Article  CAS  Google Scholar 

  • Yamamori M, Guzmán C (2013) SNPs and an insertion sequence in five Wx-A1 alleles as factors for variant Wx-A1 protein in wheat. Euphytica 192:325–338

    Article  CAS  Google Scholar 

  • Yamamori M, Yamamoto K (2011) Effects of two novel Wx-A1 alleles of common wheat (Triticum aestivum L.) on amylose and starch properties. J Cereal Sci 54:229–235

    Article  CAS  Google Scholar 

  • Yamamori M, Nakamura T, Endo TR, Nagamine T (1994) Waxy protein deficiency and chromosomal location of coding genes in common wheat. Theor Appl Genet 89:179–184

    Article  PubMed  CAS  Google Scholar 

  • Yamamori M, Fujita S, Hayakawa K, Matsuki J, Yasui T (2000) Genetic elimination of a starch granule protein, SGP-1, of wheat generates an altered starch with apparent high amylose. Theor Appl Genet 101:21–29

    Article  CAS  Google Scholar 

  • Yan L, Bhave M (2001) Characterization of waxy proteins and waxy genes of Triticum timopheevii and T. zhukovskyi and implications for evolution of wheat. Genome 44:582–588

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Bhave M, Fairclough R, Konik C, Rahman S, Appels R (2000) The genes encoding granule-bound starch synthases at the waxy loci of the A, B, and D progenitors of common wheat. Genome 43:264–272

    Article  PubMed  CAS  Google Scholar 

  • Yasui T, Sasaki T, Matsuki J, Yamamori M (1997) Waxy endosperm mutants of bread wheat (Triticum aestivum L.) and their starch properties. Breed Sci 47:161–163

    Google Scholar 

Download references

Acknowledgments

This research was supported by grant AGL2010-19643-C02-01 from the Spanish Ministry of Economy and Competitiveness, co-financed with the European Regional Development Fund (FEDER) from the European Union. We thank the National Small Grain Collection (Aberdeen, USA) and the Institute for Plant Genetics and Crop Plant Research (Gatersleben, Germany) for supplying the material analyzed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan B. Alvarez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortega, R., Guzmán, C. & Alvarez, J.B. Wx gene in diploid wheat: molecular characterization of five novel alleles from einkorn (Triticum monococcum L. ssp. monococcum) and T. urartu . Mol Breeding 34, 1137–1146 (2014). https://doi.org/10.1007/s11032-014-0105-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0105-4

Keywords

Navigation