Molecular Breeding

, Volume 34, Issue 3, pp 1109–1124 | Cite as

A Lycium chinense-derived P5CS-like gene is regulated by water deficit-induced endogenous abscisic acid and overexpression of this gene enhances tolerance to water deficit stress in Arabidopsis

  • Chunfeng Guan
  • Jing Ji
  • Wenzhu Guan
  • Yuanhang Feng
  • Xiaozhou Li
  • Chao Jin
  • Jing Li
  • Yurong Wang
  • Gang Wang


Proline is one of the most common compatible osmolytes in water-stressed plants. Δ1-Pyrroline-5-carboxylate synthetase (P5CS) catalyzes the rate-limiting step of proline synthesis in plants. Abscisic acid (ABA) is an important plant hormone, and plays a critical role in triggering plant responses to different stresses such as water deficit. The interplays between P5CS transcript levels, endogenous ABA and proline content under long-term water deficit stress in halophyte plants have yet to be identified. In this study, a novel P5CS gene was isolated from leaves of Lycium chinense and characterized as a stress-induced type of P5CS gene, designated LcP5CS. The function of LcP5CS was confirmed in vitro with an Escherichia coli expression system. The correlation between LcP5CS transcript expression, proline accumulation and water deficit-induced endogenous ABA accumulation was explored using a potent ABA inhibitor, abamine SG. To characterize the cis elements responsible for this correlated regulation, the LcP5CS promoter was isolated and transcriptionally fused to a β-glucuronidase (GUS) coding region, then transformed into Arabidopsis. The T2 generation of transformants was analyzed by histochemical GUS assay. Strong staining was observed in the leaves of plants treated with water deficit stress and the staining was reduced by co-treatment with abamine SG. The involvement of endogenous ABA in modulating the LcP5CS transcript levels was confirmed in transgenic Arabidopsis expressing ProLcP5CS::LcP5CS which was grown under water deficit stress. The transgenic Arabidopsis expressing ProLcP5CS::LcP5CS also showed great tolerance to water deficit stress.


Endogenous ABA Lycium chinense Proline Water deficit stress 



This work was supported by Specialized Research Fund for the Doctoral Program of Higher Education (20120032120044), National Natural Science Foundation of China (31271419, 31271793, 31300329), and the National Genetically Modified Organism Major Projects of China (2014ZX08003-002B).

Supplementary material

11032_2014_103_MOESM1_ESM.doc (422 kb)
Supplementary material 1 (DOC 422 kb)


  1. Armengaud P, Thiery L, Buhot N, Grenier-de March G, Savouré A (2004) Transcriptional regulation of proline biosynthesis in Medicago truncatula reveals developmental and environmental specific features. Physiol Plant 120(3):442–450. doi: 10.1111/j.0031-9317.2004.00251.x PubMedCrossRefGoogle Scholar
  2. Asano N, Kato A, Miyauchi M, Kizu H, Tomimori T, Matsui K, Nash RJ, Molyneux RJ (1997) Specific α-galactosidase inhibitors, N-methylcalystegines structure/activity relationships of calystegines from Lycium chinense. Eur J Biochem 248(2):296–303. doi: 10.1111/j.1432-1033.1997.00296.x PubMedCrossRefGoogle Scholar
  3. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207. doi: 10.1007/bf00018060 CrossRefGoogle Scholar
  4. Bechtold N, Pelletier G (1998) In planta agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. In: Martinez-Zapater J, Salinas J (eds) Arabidopsis protocols, vol 82. Methods in molecular biology™. Humana Press, pp 259–266. doi: 10.1385/0-89603-391-0:259
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72(1–2):248–254. doi: 10.1016/0003-2697(76)90527-3 PubMedCrossRefGoogle Scholar
  6. Bravo LA, Zúñiga GE, Alberdi M, Corcuera LJ (1998) The role of ABA in freezing tolerance and cold acclimation in barley. Physiol Plant 103(1):17–23. doi: 10.1034/j.1399-3054.1998.1030103.x CrossRefGoogle Scholar
  7. Cechin I, Rossi SC, Oliveira VC, Fumis TF (2006) Photosynthetic responses and proline content of mature and young leaves of sunflower plants under water deficit. Photosynthetica 44(1):143–146. doi: 10.1007/s11099-005-0171-2 CrossRefGoogle Scholar
  8. Chen J-B, Wang S-M, Jing R-L, Mao X-G (2009) Cloning the PvP5CS gene from common bean (Phaseolus vulgaris) and its expression patterns under abiotic stresses. J Plant Physiol 166(1):12–19. doi: 10.1016/j.jplph.2008.02.010 PubMedCrossRefGoogle Scholar
  9. Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4(2):215–223. doi: 10.1046/j.1365-313X.1993.04020215.x CrossRefGoogle Scholar
  10. Dong JZ, Wang Y, Wang SH, Yin LP, Xu GJ, Zheng C, Lei C, Zhang MZ (2013) Selenium increases chlorogenic acid, chlorophyll and carotenoids of Lycium chinense leaves. J Sci Food Agric 93(2):310–315. doi: 10.1002/jsfa.5758 PubMedCrossRefGoogle Scholar
  11. Duan B, Yang Y, Lu Y, Korpelainen H, Berninger F, Li C (2007) Interactions between water deficit, ABA, and provenances in Picea asperata. J Exp Bot 58(11):3025–3036. doi: 10.1093/jxb/erm160 PubMedCrossRefGoogle Scholar
  12. Farooq M, Hussain M, Wahid A, Siddique KHM (2012) Drought stress in plants: an overview. In: Aroca R (ed) Plant responses to drought stress. Springer, Berlin, pp 1–33. doi: 10.1007/978-3-642-32653-0_1
  13. Fujita T, Maggio A, Garcia-Rios M, Bressan RA, Csonka LN (1998) Comparative analysis of the regulation of expression and structures of two evolutionarily divergent genes for Δ1-pyrroline-5-carboxylate synthetase from tomato. Plant Physiol 118(2):661–674. doi: 10.1104/pp.118.2.661 PubMedCrossRefPubMedCentralGoogle Scholar
  14. García-Ríos M, Fujita T, LaRosa PC, Locy RD, Clithero JM, Bressan RA, Csonka LN (1997) Cloning of a polycistronic cDNA from tomato encoding γ-glutamyl kinase and γ-glutamyl phosphate reductase. Proc Natl Acad Sci USA 94(15):8249–8254PubMedCrossRefPubMedCentralGoogle Scholar
  15. Ginzberg I, Stein H, Kapulnik Y, Szabados L, Strizhov N, Schell J, Koncz C, Zilberstein A (1998) Isolation and characterization of two different cDNAs of Δ1-pyrroline-5-carboxylate synthase in alfalfa, transcriptionally induced upon salt stress. Plant Mol Biol 38(5):755–764. doi: 10.1023/a:1006015212391 PubMedCrossRefGoogle Scholar
  16. Gregersen PL, Culetic A, Boschian L, Krupinska K (2013) Plant senescence and crop productivity. Plant Mol Biol 82(6):603–622PubMedCrossRefGoogle Scholar
  17. Hebbar KB, Rane J, Ramana S, Panwar NR, Ajay S, Rao AS, Prasad PVV (2014) Natural variation in the regulation of leaf senescence and relation to N and root traits in wheat. Plant Soil 378(1–2):99–112. doi: 10.1007/s11104-013-2012-6
  18. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27(1):297–300. doi: 10.1093/nar/27.1.297 PubMedCrossRefPubMedCentralGoogle Scholar
  19. Hmida-Sayari A, Gargouri-Bouzid R, Bidani A, Jaoua L, Savouré A, Jaoua S (2005) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci 169(4):746–752. doi: 10.1016/j.plantsci.2005.05.025 CrossRefGoogle Scholar
  20. Hörtensteiner S (2006) Chlorophyll degradation during senescence. Annu Rev Plant Biol 57:55–77PubMedCrossRefGoogle Scholar
  21. Hur J, Jung K-H, Lee C-H, An G (2004) Stress-inducible OsP5CS2 gene is essential for salt and cold tolerance in rice. Plant Sci 167(3):417–426. doi: 10.1016/j.plantsci.2004.04.009 CrossRefGoogle Scholar
  22. Igarashi Y, Yoshiba Y, Takeshita T, Nomura S, Otomo J, Yamaguchi-Shinozaki K, Shinozaki K (2000) Molecular cloning and characterization of a cDNA encoding proline transporter in rice. Plant Cell Physiol 41(6):750–756. doi: 10.1093/pcp/41.6.750 PubMedCrossRefGoogle Scholar
  23. Jefferson R (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5(4):387–405. doi: 10.1007/bf02667740 CrossRefGoogle Scholar
  24. Jiang M, Zhang J (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42(11):1265–1273. doi: 10.1093/pcp/pce162 PubMedCrossRefGoogle Scholar
  25. Jin S, Chen CCS, Plant AL (2000) Regulation by ABA of osmotic-stress-induced changes in protein synthesis in tomato roots. Plant, Cell Environ 23(1):51–60. doi: 10.1046/j.1365-3040.2000.00520.x CrossRefGoogle Scholar
  26. Kishor PBK (2005) Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. Curr Sci 88:424–438Google Scholar
  27. Kitahata N, Han S-Y, Noji N, Saito T, Kobayashi M, Nakano T, Kuchitsu K, Shinozaki K, Yoshida S, Matsumoto S, Tsujimoto M, Asami T (2006) A 9-cisepoxycarotenoid dioxygenase inhibitor for use in the elucidation of abscisic acid action mechanisms. Bioorgan Med Chem 14(16):5555–5561. doi: 10.1016/j.bmc.2006.04.025
  28. Liu J, Zhu JK (1997) Proline accumulation and salt-stress-induced gene expression in a salt-hypersensitive mutant of Arabidopsis. Plant Physiol 114(2):591–596. doi: 10.1104/pp.114.2.591 PubMedCrossRefPubMedCentralGoogle Scholar
  29. Lutts S, Kinet JM, Bouharmont J (1996) Effects of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance. Plant Growth Regul 19(3):207–218. doi: 10.1007/bf00037793 CrossRefGoogle Scholar
  30. Marcotte WR, Russell SH, Quatrano RS (1989) Abscisic acid-responsive sequences from the em gene of wheat. Plant Cell Online 1(10):969–976. doi: 10.1105/tpc.1.10.969 CrossRefGoogle Scholar
  31. McDonnell EM, Coughlan SJ, Jones RGW (1983) Differential effects of abscisic acid on glycinebetaine and proline accumulation in three plant species. Zeitschrift für Pflanzenphysiologie 109(3):207–213. doi: 10.1016/S0044-328X(83)80222-0 CrossRefGoogle Scholar
  32. Nguyen M, Kim G-B, Hyun S-H, Lee S-Y, Lee C-Y, Choi H-K, Choi H-K, Nam Y-W (2013) Physiological and metabolomic analysis of a knockout mutant suggests a critical role of MtP5CS3 gene in osmotic stress tolerance of Medicago truncatula. Euphytica 193(1):101–120. doi: 10.1007/s10681-013-0957-4 CrossRefGoogle Scholar
  33. Norman SM, Maier VP, Pon DL (1990) Abscisic acid accumulation and carotenoid and chlorophyll content in relation to water stress and leaf age of different types of citrus. J Agric Food Chem 38(6):1326–1334. doi: 10.1021/jf00096a007 CrossRefGoogle Scholar
  34. Ober ES, Sharp RE (1994) Proline accumulation in maize (Zea mays L.) primary roots at low water potentials (I. Requirement for increased levels of abscisic acid). Plant Physiol 105(3):981–987. doi: 10.1104/pp.105.3.981 PubMedPubMedCentralGoogle Scholar
  35. Ougham HJ, Morris P, Thomas H (2005) The colors of autumn leaves as symptoms of cellular recycling and defenses against environmental stresses. Curr Top Dev Biol 66:135–160PubMedCrossRefGoogle Scholar
  36. Poustini K, Siosemardeh A, Ranjbar M (2007) Proline accumulation as a response to salt stress in 30 wheat (Triticum aestivum L.) cultivars differing in salt tolerance. Genet Resour Crop Evol 54(5):925–934. doi: 10.1007/s10722-006-9165-6
  37. Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  38. Savouré A, Hua XJ, Bertauche N, Montagu MV, Verbruggen N (1997) Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses in Arabidopsis thaliana. Mol Gen Genet 254(1):104–109. doi: 10.1007/s004380050397 PubMedCrossRefGoogle Scholar
  39. Sawahel W, Hassan A (2002) Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. Biotechnol Lett 24(9):721–725. doi: 10.1023/a:1015294319114 CrossRefGoogle Scholar
  40. Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221–227. doi: 10.1093/jxb/erl164 PubMedCrossRefGoogle Scholar
  41. Singh KB, Foley RC, Oñate-Sánchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5(5):430–436. doi: 10.1016/S1369-5266(02)00289-3 PubMedCrossRefGoogle Scholar
  42. Sripinyowanich S, Klomsakul P, Boonburapong B, Bangyeekhun T, Asami T, Gu H, Buaboocha T, Chadchawan S (2013) Exogenous ABA induces salt tolerance in indica rice (Oryza sativa L.): the role of OsP5CS1 and OsP5CR gene expression during salt stress. Environ Exp Bot 86:94–105. doi: 10.1016/j.envexpbot.2010.01.009 CrossRefGoogle Scholar
  43. Stewart CR, Voetberg G (1987) Abscisic acid accumulation is not required for proline accumulation in wilted leaves. Plant Physiol 83(4):747–749. doi: 10.1104/pp.83.4.747 PubMedCrossRefPubMedCentralGoogle Scholar
  44. Strizhov N, Ábrahám E, Ökrész L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J 12(3):557–569. doi: 10.1111/j.0960-7412.1997.00557.x PubMedCrossRefGoogle Scholar
  45. Su M, Li X-F, Ma X-Y, Peng X-J, Zhao A-G, Cheng L-Q, Chen S-Y, Liu G-S (2011) Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment. Plant Sci 181(6):652–659. doi: 10.1016/j.plantsci.2011.03.002 PubMedCrossRefGoogle Scholar
  46. Székely G, Ábrahám E, Cséplő Á, Rigó G, Zsigmond L, Csiszár J, Ayaydin F, Strizhov N, Jásik J, Schmelzer E, Koncz C, Szabados L (2008) Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant J 53(1):11–28. doi: 10.1111/j.1365-313X.2007.03318.x PubMedCrossRefGoogle Scholar
  47. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599. doi: 10.1093/molbev/msm092 PubMedCrossRefGoogle Scholar
  48. Turner NC (1988) Measurement of plant water status by the pressure chamber technique. Irrig Sci 9(4):289–308CrossRefGoogle Scholar
  49. Vendruscolo ECG, Schuster I, Pileggi M, Scapim CA, Molinari HBC, Marur CJ, Vieira LGE (2007) Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat. J Plant Physiol 164(10):1367–1376. doi: 10.1016/j.jplph.2007.05.001 PubMedCrossRefGoogle Scholar
  50. Verbruggen N, Hermans C (2008) Proline accumulation in plants: a review. Amino Acids 35(4):753–759. doi: 10.1007/s00726-008-0061-6 PubMedCrossRefGoogle Scholar
  51. Verslues PE, Bray EA (2006) Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. J Exp Bot 57(1):201–212. doi: 10.1093/jxb/erj026 PubMedCrossRefGoogle Scholar
  52. Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for Δ1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7(5):751–760. doi: 10.1046/j.1365-313X.1995.07050751.x PubMedCrossRefGoogle Scholar
  53. Zhang R, Ah Kang K, Piao MJ, Kim KC, Kim AD, Chae S, Park JS, Youn UJ, Hyun JW (2010) Cytoprotective effect of the fruits of Lycium chinense Miller against oxidative stress-induced hepatotoxicity. J Ethnopharmacol 130(2):299–306. doi: 10.1016/j.jep.2010.05.007 PubMedCrossRefGoogle Scholar
  54. Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97(1):111–119. doi: 10.1016/j.fcr.2005.08.018
  55. Zheng G-Q, Zheng Z-Y, Xu X, Hu Z-H (2010) Variation in fruit sugar composition of Lycium barbarum L. and Lycium chinense Mill. of different regions and varieties. Biochem Syst Ecol 38(3):275–284. doi: 10.1016/j.bse.2010.01.008 CrossRefGoogle Scholar
  56. Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6(2):66–71. doi: 10.1016/S1360-1385(00)01838-0 PubMedCrossRefGoogle Scholar
  57. Zhu J-K (2002) Salt and drought stress signal transduction in plants. Ann rev plant biol 53(1):247–273. doi: 10.1146/annurev.arplant.53.091401.143329
  58. Zhu B, Su J, Chang M, Verma DPS, Fan Y-L, Wu R (1998) Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water- and salt-stress in transgenic rice. Plant Sci 139(1):41–48. doi: 10.1016/S0168-9452(98)00175-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Chunfeng Guan
    • 1
  • Jing Ji
    • 1
  • Wenzhu Guan
    • 2
  • Yuanhang Feng
    • 2
  • Xiaozhou Li
    • 3
  • Chao Jin
    • 1
  • Jing Li
    • 1
  • Yurong Wang
    • 1
    • 4
  • Gang Wang
    • 1
  1. 1.School of Environmental Science and EngineeringTianjin UniversityTianjinPeople’s Republic of China
  2. 2.School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China
  3. 3.Department of Medical GeneticsTianjin Medical University General HospitalTianjinPeople’s Republic of China
  4. 4.Yaohua High SchoolTianjinPeople’s Republic of China

Personalised recommendations