Advertisement

Molecular Breeding

, Volume 34, Issue 3, pp 1007–1021 | Cite as

Genome-wide single nucleotide polymorphisms and insertion–deletions of Oryza sativa L. subsp. japonica cultivars grown near the northern limit of rice cultivation

  • Sho Takano
  • Shuichi Matsuda
  • Noriko Kinoshita
  • Naomi Shimoda
  • Takashi Sato
  • Kiyoaki Kato
Article

Abstract

Single nucleotide polymorphisms (SNPs) and insertions–deletions (InDels) are valuable molecular markers for molecular breeding among genetically closely related cultivars. Rice (Oryza sativa L. subsp. japonica) cultivars grown in Hokkaido (45–42°N), the northernmost region of rice paddy cultivation in Japan, have been bred for over 100 years for adaptation to low summer temperatures together with high yield and good eating quality. In this study, for 10 closely related rice cultivars released in Hokkaido and cultivar Koshihikari, we identified genome-wide SNPs and InDels by next-generation sequencing. More than 29 million reads from the Hokkaido cultivars, each 101 nucleotides long, were uniquely mapped to the Nipponbare reference genome. The average of the total nucleotide length of all uniquely mapped reads corresponded to 10.9 times (3,978 Mb with genome coverage of 90.7 %) the Nipponbare reference genome. An average of 99,955 putative SNPs (1.8 times the number in Koshihikari) and 14,617 putative InDels (also 1.8 times the number in Koshihikari) were detected in Hokkaido cultivars relative to the Nipponbare genome, which enabled analyses of the inheritance of pedigree haplotypes of four cultivars, SNPs and InDels among closely related Hokkaido cultivars, and haplotype blocks unique to Hokkaido cultivars. The comprehensive SNP and InDel data provide DNA marker resources and will facilitate quantitative trait locus analysis of biparental mapping of very closely related Hokkaido cultivars. Furthermore, the haplotype blocks unique to Hokkaido cultivars represent ideal genetic regions for improvement of cultivars to be grown near the northern and southern limits of rice cultivation.

Keywords

Single nucleotide polymorphism Insertion Deletion Next-generation sequencing Oryza sativa L. 

Notes

Acknowledgments

This study was supported in part by the Suhara Memorial Foundation, the Tojuro Iijima Foundation for Food Science and Technology, and Adaptable and Seamless Technology Transfer Program through Target-driven R&D (A-STEP), Japan Science and Technology Agency (JST). Seeds of Hokkaido cultivars were provided by the Central Agricultural Experiment Station, Local Independent Administrative Agency Hokkaido Research Organization, and seeds of Koshihikari were provided by the National Institute of Agrobiological Sciences Genebank. We thank Noboru Shinbashi, Harumi Kikuchi, Toshio Yamamoto, Satoshi Natsume, Hiroki Takagi, Ryohei Terauchi, Kei Sonoyama, Toshihiko Maekawa, Yuuji Hirayama, Hitoshi Kiuchi, Tsutomu Nishimura, and Hirokazu Sato for their valuable suggestions throughout the study.

Supplementary material

11032_2014_93_MOESM1_ESM.pdf (4.9 mb)
Supplementary material 1 (PDF 5025 kb)

References

  1. Arai-Kichise Y, Shiwa Y, Nagasaki H, Ebana K, Yoshikawa H, Yano M, Wakasa K (2011) Discovery of genome-wide DNA polymorphisms in a landrace cultivar of Japonica rice by whole-genome sequencing. Plant Cell Physiol 52:274–282PubMedCrossRefPubMedCentralGoogle Scholar
  2. Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48:1649–1664CrossRefGoogle Scholar
  3. Boualaphanh C, Daygon VD, Calingacion MN, Sanitchon J, Jothityangkoon D, Mumm R, Hall RD, Fitzgerald MA (2011) Use of new generation single nucleotide polymorphism genotyping for rapid development of near-isogenic lines in rice. Crop Sci 51:2067–2073CrossRefGoogle Scholar
  4. Chen H, He H, Zou Y, Chen W, Yu R, Liu X, Yang Y, Gao YM, Xu JL, Fan LM, Li Y, Li ZK, Deng XW (2011) Development and application of a set of breeder-friendly SNP markers for genetic analyses and molecular breeding of rice (Oryza sativa L.). Theor Appl Genet 123:869–879PubMedCrossRefGoogle Scholar
  5. Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Phil Trans R Soc B 363:557–572PubMedCrossRefPubMedCentralGoogle Scholar
  6. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510PubMedCrossRefGoogle Scholar
  7. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43:491–498PubMedCrossRefPubMedCentralGoogle Scholar
  8. Eathington SR, Crosbie TM, Edwards MD, Reiter RS, Bull JK (2007) Molecular markers in a commercial breeding program. Crop Sci 47:S154–S163CrossRefGoogle Scholar
  9. Famoso AN, Zhao K, Clark RT, Tung C-W, Wright MH, Bustamante C, Kochian LV, McCouch SR (2011) Genetic architecture of aluminum tolerance in rice (Oryza sativa) determined through genome-wide association analysis and QTL mapping. PLoS Genet 7:e1002221PubMedCrossRefPubMedCentralGoogle Scholar
  10. Feltus FA, Wan J, Schulze SR, Estill JC, Jiang N, Paterson AH (2004) An SNP resource for rice genetics and breeding based on subspecies indica and japonica genome alignments. Genome Res 14:1812–1819PubMedCrossRefPubMedCentralGoogle Scholar
  11. Fujino K, Sekiguchi H (2005) Mapping of qtls conferring extremely early heading in rice (Oryza sativa L.). Theor Appl Genet 111:393–398PubMedCrossRefGoogle Scholar
  12. Fujino K, Sekiguchi H (2008) Mapping of quantitative trait loci controlling heading date among rice cultivars in the northernmost region of Japan. Breed Sci 58:367–373CrossRefGoogle Scholar
  13. Galeano CH, Fernández AC, Gómez M, Blair MW (2009) Single strand conformation polymorphism based SNP and Indel markers for genetic mapping and synteny analysis of common bean (Phaseolus vulgaris L.). BMC Genom 10:629CrossRefGoogle Scholar
  14. Han B, Xue Y (2003) Genome-wide intraspecific DNA-sequence variations in rice. Curr Opin Plant Biol 6:134–138PubMedCrossRefGoogle Scholar
  15. He G, Luo X, Tian F, Li K, Zhu Z, Su W, Qian X, Fu Y, Wang X, Sun C, Yang J (2006) Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Res 16:618–626PubMedCrossRefPubMedCentralGoogle Scholar
  16. Heffner EL, Sorrells ME, Jannink JL (2009) Genome selection for crop improvement. Crop Sci 49:1–12CrossRefGoogle Scholar
  17. Hillier LW, Marth GT, Quinlan AR, Dooling D, Fewell G, Barnett D, Fox P, Glasscock JI, Hickenbotham M, Huang W, Magrini VJ, Richt RJ, Sander SN, Stewart DA, Stromberg M, Tsung EF, Wylie T, Schedl T, Wilson RK, Mardis ER (2008) Whole-genome sequencing and variant discovery in C. elegans. Nat Methods 5:183–188PubMedCrossRefGoogle Scholar
  18. Hori K, Yamamoto T, Ebana K, Takeuchi Y, Yano M (2009) A novel quantitative trait locus, qCL1, involved in semi-dwarfism derived from Japanese rice cultivar Nipponbare. Breed Sci 59:285–295CrossRefGoogle Scholar
  19. Hori K, Sugimoto K, Nonoue Y, Ono N, Matsubara K, Yamanouchi U, Abe A, Takeuchi Y, Yano M (2010) Detection of quantitative trait loci controlling pre-harvest sprouting resistance by using backcrossed populations of japonica rice cultivars. Theor Appl Genet 120:1547–1557PubMedCrossRefPubMedCentralGoogle Scholar
  20. Horie T, Shiraiwa T, Homma K, Katsura K, Maeda S, Yoshida H (2005) Can yields of lowland rice resume the increases that they showed in the 1980s? Plant Prod Sci 8:259–274CrossRefGoogle Scholar
  21. Hosoi N (1989) Regional differences of the cool tolerance at heading and flowering stages in Japanese varieties of rice (Oryza sativa L.). Jpn J Breed 39:481–494CrossRefGoogle Scholar
  22. Hyten DL, Cannon SB, Song Q, Weeks N, Fickus EW, Shoemaker RC, Specht JE, Farmer AD, May GD, Cregan PB (2010a) High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genom 11:38CrossRefGoogle Scholar
  23. Hyten DL, Song Q, Fickus EW, Quigley CV, Lim JS, Choi IY, Hwang EY, Pastor-Corrales M, Cregan PB (2010b) High throughput SNP discovery and assay development in common bean. BMC Genom 11:475CrossRefGoogle Scholar
  24. Jannink J, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177PubMedCrossRefGoogle Scholar
  25. Kim SI, Tai TH (2013) Identification of SNPs in closely related temperate japonica rice cultivars using restriction enzyme-phased sequencing. PLoS ONE 8:e60176PubMedCrossRefPubMedCentralGoogle Scholar
  26. Kim JS, Ahn SG, Kim CK, Shim CK (2010) Screening of rice blast resistance genes from aromatic rice germplasms with SNP markers. Plant Pathol J 26:70–79CrossRefGoogle Scholar
  27. Kobayashi A, Tomita K (2008) QTL detection for stickiness of cooked rice using recombinant inbred lines derived from crosses between japonica rice cultivars. Breed Sci 58:419–426CrossRefGoogle Scholar
  28. Kobayashi A, Bao G, Ye S, Tomita K (2007) Detection of quantitative trait loci for white-black and basal-white kernels under high temperature stress in japonica rice cultivars. Breed Sci 57:107–116CrossRefGoogle Scholar
  29. Kumar S, Banks TW, Cloutier S (2012) SNP discovery through next-generation sequencing and its applications. Int J Plant Genomics 2012:Article ID 831460Google Scholar
  30. Lai J, Li R, Xu X, Jin W, Xu M, Zhao H, Xiang Z, Song W, Ying K, Zhang M, Jiao Y, Ni P, Zhang J, Li D, Guo X, Ye K, Jian M, Wang B, Zheng H, Liang H, Zhang X, Wang S, Chen S, Li J, Fu Y, Springer NM, Yang H, Wang J, Dai J, Schnable PS, Wang J (2010) Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 42:1027–1030PubMedCrossRefGoogle Scholar
  31. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079PubMedCrossRefPubMedCentralGoogle Scholar
  32. Lorenz A, Cho S, Asoro FG, Heffner EL, Hayashi T, Iwata H, Smith KP, Sorrells ME, Jannink JL (2010) Genomic selection in plant breeding: knowledge and prospects. Adv Agron 110:77–123CrossRefGoogle Scholar
  33. Matsubara K, Kono I, Hori K, Nonoue Y, Ono N, Shomura A, Mizubayashi T, Yamamoto S, Yamanouchi U, Shirasawa K, Nishio T, Yano M (2008) Novel QTLs for photoperiodic flowering revealed by using reciprocal backcross inbred lines from crosses between japonica rice cultivars. Theor Appl Genet 117:935–945PubMedCrossRefGoogle Scholar
  34. McCouch SR, Zhao K, Wright M, Tung C-W, Ebana K, Thomson M, Reynolds A, Wang D, Declerck G, Ali ML, McClung AM, Eizenga GC, Bustamante C (2010) Development of genome-wide SNP assays for rice. Breed Sci 60:524–535CrossRefGoogle Scholar
  35. Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977PubMedCrossRefPubMedCentralGoogle Scholar
  36. Nagasaki H, Ebana K, Shibaya T, Yonemaru J, Yano M (2010) Core single-nucleotide polymorphisms—a tool for genetic analysis of the Japanese rice population. Breed Sci 60:648–655CrossRefGoogle Scholar
  37. Nonoue Y, Fujino K, Hirayama Y, Yamanouchi U, Lin SY, Yano M (2008) Detection of quantitative trait loci controlling extremely early heading in rice. Theor Appl Genet 116:715–722PubMedCrossRefGoogle Scholar
  38. Okumoto Y, Ichitani K, Inoue H, Tanisaka T (1997) Photoperiod insensitivity gene essential to the varieties grown in the northern limit region of paddy rice (Oryza sativa L.) cultivation. In: Tigerstedt PMA (ed) Adaptation in plant breeding. Kluwer Academic Publisher, Netherlands, pp 77–80CrossRefGoogle Scholar
  39. Salathia N, Lee HN, Sangster TA, Morneau K, Landry CR, Schellenberg K, Behere AS, Gunderson KL, Cavalieri D, Jander G, Queitsch C (2007) Indel arrays: an affordable alternative for genotyping. Plant J 51:727–737PubMedCrossRefGoogle Scholar
  40. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotechnol 26:1135–1145PubMedCrossRefGoogle Scholar
  41. Smith DR, Quinlan AR, Peckham HE, Makowsky K, Tao W, Woolf B, Shen L, Donahue WF, Tusneem N, Stromberg MP, Stewart DA, Zhang L, Ranade SS, Warner JB, Lee CC, Coleman BE, Zhang Z, McLaughlin SF, Malek JA, Sorenson JM, Blanchard AP, Chapman J, Hillman D, Chen F, Rokhsar DS, McKernan KJ, Jeffries TW, Marth GT, Richardson PM (2008) Rapid whole-genome mutational profiling using next-generation sequencing technologies. Genome Res 18:1638–1642PubMedCrossRefPubMedCentralGoogle Scholar
  42. Sonoyama K, Ogasawara T, Goto H, Yoshida T, Takemura N, Fujiwara R, Watanabe J, Ito H, Morita T, Tokunaga Y, Yanagihara T (2010) Comparison of gut microbiota and allergic reactions in BALB/c mice fed different cultivars of rice. Br J Nutr 103:218–226PubMedCrossRefGoogle Scholar
  43. Subbaiyan GK, Waters DLE, Katiyar SK, Sadananda AR, Vaddadi S, Henry RJ (2012) Genome-wide DNA polymorphisms in elite indica rice inbreds discovered by whole-genome sequencing. Plant Biotechnol J 10:623–634PubMedCrossRefGoogle Scholar
  44. Tabata M, Hirabayashi H, Takeuchi Y, Ando I, Iida Y, Ohsawa R (2007) Mapping of quantitative trait loci for the occurrence of white-back kernels associated with high temperatures during the ripening period of rice (Oryza sativa L.). Breed Sci 57:47–52CrossRefGoogle Scholar
  45. Takeuchi Y, Hori K, Suzuki K, Nonoue Y, Takemoto-Kuno Y, Maeda H, Sato H, Hirabayashi H, Ohta H, Ishii T, Kato H, Nemoto H, Imbe T, Ohtsubo K, Yano M, Ando I (2008) Major QTLs for eating quality of an elite Japanese rice cultivar, Koshihikari, on the short arm of chromosome 3. Breed Sci 58:437–445CrossRefGoogle Scholar
  46. Thomson MJ, Zhao K, Wright M, McNally KL, Rey J, Tung C-W, Reynolds A, Scheffler B, Eizenga G, McClung A (2012) High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform. Mol Breed 29:875–886CrossRefGoogle Scholar
  47. Tung C-W, Zhao K, Wright MH, Ali ML, Jung J, Kimball J, Tyagi W, Thomson MJ, McNally K, Leung H (2010) Development of a research platform for dissecting phenotype–genotype associations in rice (Oryza spp.). Rice 3:205–217CrossRefGoogle Scholar
  48. Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530PubMedCrossRefGoogle Scholar
  49. Vasemägi A, Gross R, Palm D, Paaver T, Primmer CR (2010) Discovery and application of insertion–deletion (INDEL) polymorphisms for QTL mapping of early life-history traits in Atlantic salmon. BMC Genom 11:156CrossRefGoogle Scholar
  50. Wada T, Ogata T, Tsubone M, Uchimura Y, Matsue Y (2008) Mapping of QTLs for eating quality and physicochemical properties of the japonica rice ‘Koshihikari’. Breed Sci 58:427–435CrossRefGoogle Scholar
  51. Wang DG, Fan JB, Siao CJ, Berno A, Young P, Sapolsky R, Ghandour G, Perkins N, Winchester E, Spencer J, Kruglyak L, Stein L, Hsie L, Topaloglou T, Hubbell E, Robinson E, Mittmann M, Morris MS, Shen N, Kilburn D, Rioux J, Nusbaum C, Rozen S, Hudson TJ, Lipshutz R, Chee M, Lander ES (1998) Large-scale identification, mapping, and genotyping of single- nucleotide polymorphisms in the human genome. Science 280:1077–1082PubMedCrossRefGoogle Scholar
  52. Xu Y, Lu Y, Yan J, Babu R, Hao Z, Gao S, Zhang S, Li J, Vivek B, Magorokosho C (2008) SNP-chip-based genomewide scans for germplasm evaluation, marker-trait association analysis and development of a molecular breeding platform in maize. In: Proceedings of 14th Australiasian plant breeding conference (APBC) and 11th congress of the society for the advancement of breeding research in Asia and Oceania (SABRAO) 10–14 August 2009, Cairns Convention Centre, Cairns, Tropical North Queensland, AustraliaGoogle Scholar
  53. Yamamoto T, Nagasaki H, Yonemaru JI, Ebana K, Nakajima M, Shibaya T, Yano M (2010) Fine definition of the pedigree haplotypes of closely related rice cultivars by means of genome-wide discovery of single-nucleotide polymorphisms. BMC Genom 11:267CrossRefGoogle Scholar
  54. Yonemaru J, Yamamoto T, Fukuoka S, Uga Y, Hori K, Yano M (2010) Q-TARO: QTL annotation rice online database. Rice 3:194–203CrossRefGoogle Scholar
  55. Zhao K, Wright M, Kimball J, Eizenga G, McClung A, Kovach M, Tyagi W, Ali ML, Tung CW, Reynolds A, Bustamante CD, McCouch SR (2010) Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PLoS ONE 5:e10780PubMedCrossRefPubMedCentralGoogle Scholar
  56. Zhao K, Tung CW, Eizenga GC, Wright MH, Ali ML, Price AH, Norton GJ, Islam MR, Reynolds A, Mezey J, McClung AM, Bustamante CD, McCouch SR (2011) Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat Commun 2:467PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Sho Takano
    • 1
  • Shuichi Matsuda
    • 1
  • Noriko Kinoshita
    • 1
  • Naomi Shimoda
    • 1
  • Takashi Sato
    • 2
  • Kiyoaki Kato
    • 1
  1. 1.Department of Agro-Environmental ScienceObihiro University of Agriculture and Veterinary MedicineObihiroJapan
  2. 2.Rice Breeding Group, Kamikawa Agricultural Experiment StationLocal Independent Administrative Agency Hokkaido Research OrganizationPippuJapan

Personalised recommendations