Skip to main content
Log in

Overexpression of a peroxiredoxin Q gene, SsPrxQ, in Eustoma grandiflorum Shinn enhances its tolerance to salt and high light intensity

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Abiotic stress, such as salt, high light intensity and extreme temperature, can result in enhanced production of reactive oxygen species (ROS). One of the major ROS-scavenging enzymes of plants is peroxiredoxin (Prx). Peroxiredoxin Q (PrxQ), a member of the Prx gene family, was recently cloned from plants. To investigate the protective role of PrxQ during abiotic stress, we increased the capacity for its biosynthesis in Eustoma grandiflorum Shinn by overexpression of the PrxQ gene (SsPrxQ) from Suaeda salsa. The SsPrxQ gene driven by CaMV 35S promoter was expressed via E. grandiflorum. The rPrxQ protein shows antioxidant activity and thioredoxin-dependent peroxidase activity in vitro. Additionally, overexpression of SsPrxQ in E. grandiflorum leads to an increase in salt and high light intensity tolerance. These results indicate that SsPrxQ might act as an oxidative stress defensive gene in plants and could be useful for engineering stress-resistant plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Broin M, Cuiné S, Eymery F, Rey P (2002) The plastidic 2-cysteine peroxiredoxin is a target for a thioredoxin involved in the protection of the photosynthetic apparatus against oxidative damage. Plant Cell 14(6):1417–1432. doi:10.1105/tpc.001644

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Y-T, Fang Q-S, Chiang C-H, Yeh S-D, Wu H-W, Yu T-A (2010) Transgenic Eustoma grandiflorum expressing the bar gene are resistant to the herbicide Basta. Plant Cell Tiss Org 102(3):347–356. doi:10.1007/s11240-010-9739-z

    Article  CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57(5):779–795. doi:10.1007/s000180050041

    Article  CAS  PubMed  Google Scholar 

  • Dietz K-J (2003) Plant peroxiredoxins. Annu Rev Plant Biol 54(1):93

    Article  CAS  PubMed  Google Scholar 

  • Dietz KJ, Horling F, König J, Baier M (2002) The function of the chloroplast 2-cysteine peroxiredoxin in peroxide detoxification and its regulation. J Exp Bot 53(372):1321–1329. doi:10.1093/jexbot/53.372.1321

    Article  CAS  PubMed  Google Scholar 

  • Eltayeb A, Kawano N, Badawi G, Kaminaka H, Sanekata T, Shibahara T, Inanaga S, Tanaka K (2007) Overexpression of monodehydroascorbate reductase in transgenic tobacco confers enhanced tolerance to ozone, salt and polyethylene glycol stresses. Planta 225(5):1255–1264. doi:10.1007/s00425-006-0417-7

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17(7):1866–1875. doi:10.1105/tpc.105.033589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gueta-Dahan Y, Yaniv Z, Zilinskas BA, Ben-Hayyim G (1997) Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in Citrus. Planta 203(4):460–469. doi:10.1007/s004250050215

    Article  CAS  PubMed  Google Scholar 

  • Hall A, Karplus PA, Poole LB (2009) Typical 2-Cys peroxiredoxins—structures, mechanisms and functions. FEBS J 276(9):2469–2477. doi:10.1111/j.1742-4658.2009.06985.x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hosoya-Matsuda N, Motohashi K, Yoshimura H, Nozaki A, Inoue K, Ohmori M, Hisabori T (2005) Anti-oxidative stress system in cyanobacteria. J Biol Chem 280(1):840–846. doi:10.1074/jbc.M411493200

    CAS  PubMed  Google Scholar 

  • Jahns P, Latowski D, Strzalka K (2009) Mechanism and regulation of the violaxanthin cycle: the role of antenna proteins and membrane lipids. BBA-Bioenergetics 1787(1):3–14. doi:10.1016/j.bbabio.2008.09.013

    Article  CAS  PubMed  Google Scholar 

  • Jing L-W, Chen S-H, Guo X-L, Zhang H, Zhao Y-X (2006) Overexpression of a chloroplast-located peroxiredoxin Q Gene, SsPrxQ, increases the salt and low-temperature tolerance of Arabidopsis. J Integ Plant Biol 48(10):1244–1249. doi:10.1111/j.1744-7909.2006.00357.x

    Article  CAS  Google Scholar 

  • Kiba A, Nishihara M, Tsukatani N, Nakatsuka T, Kato Y, Yamamura S (2005) A peroxiredoxin Q homolog from gentians is involved in both resistance against fungal disease and oxidative stress. Plant Cell Physiol 46(6):1007–1015. doi:10.1093/pcp/pci109

    Article  CAS  PubMed  Google Scholar 

  • Lamkemeyer P, Laxa M, Collin V, Li W, Finkemeier I, Schöttler MA, Holtkamp V, Tognetti VB, Issakidis-Bourguet E, Kandlbinder A, Weis E, Miginiac-Maslow M, Dietz K-J (2006) Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis. Plant J 45(6):968–981. doi:10.1111/j.1365-313X.2006.02665.x

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Lester Packer RD (ed) Methods in enzymology, vol 148. Academic Press, New York, pp 350–382

  • Meneguzzo S, Navam-Izzo F, Izzo R (1999) Antioxidative responses of shoots and roots of wheat to increasing NaCI concentrations. J Plant Physiol 155(2):274–280. doi:10.1016/s0176-1617(99)80019-4

    Article  CAS  Google Scholar 

  • Pan H, Yang C-P, Wei Z-G, Jiang J (2006) DNA extraction of birch leaves by improved CTAB method and optimization of its ISSR system. J For Res 17(4):298–300. doi:10.1007/s11676-006-0068-3

    Article  CAS  Google Scholar 

  • Prashanth S, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17(2):281–291. doi:10.1007/s11248-007-9099-6

    Article  CAS  PubMed  Google Scholar 

  • Rouhier N, Jacquot J-P (2005) The plant multigenic family of thiol peroxidases. Free Radical Bio Med 38(11):1413–1421. doi:10.1016/j.freeradbiomed.2004.07.037

    Article  CAS  Google Scholar 

  • Rouhier N, Gelhaye E, Jacquot JP (2002) Glutaredoxin-dependent peroxiredoxin from poplar. J Biol Chem 277(16):13609–13614. doi:10.1074/jbc.M111489200

    Article  CAS  PubMed  Google Scholar 

  • Rouhier N, Gelhaye E, Gualberto JM, Jordy M-N, De Fay E, Hirasawa M, Duplessis S, Lemaire SD, Frey P, Martin F, Manieri W, Knaff DB, Jacquot J-P (2004) Poplar peroxiredoxin Q, a thioredoxin-linked chloroplast antioxidant functional in pathogen defense. Plant Physiol 134(3):1027–1038. doi:10.1104/pp.103.035865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roxas VP, Lodhi SA, Garrett DK, Mahan JR, Allen RD (2000) Stress tolerance in transgenic tobacco seedlings that overexpress glutathione S-transferase/glutathione peroxidase. Plant Cell Physiol 41(11):1229–1234. doi:10.1093/pcp/pcd051

    Article  CAS  PubMed  Google Scholar 

  • Sekmen AH, Türkan I, Takio S (2007) Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiol Planta 131(3):399–411

    Article  CAS  Google Scholar 

  • Sudhakar C, Lakshmi A, Giridarakumar S (2001) Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity. Plant Sci 161(3):613–619. doi:10.1016/s0168-9452(01)00450-2

    Article  CAS  Google Scholar 

  • Sumithra K, Jutur P, Carmel B, Reddy A (2006) Salinity-induced changes in two cultivars of Vigna radiata: responses of antioxidative and proline metabolism. Plant Growth Regul 50(1):11–22. doi:10.1007/s10725-006-9121-7

    Article  CAS  Google Scholar 

  • Tsugane K, Kobayashi K, Niwa Y, Ohba Y, Wada K, Kobayashi H (1999) A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell 11(7):1195–1206. doi:10.1105/tpc.11.7.1195

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu W, Ji J, Wang G, Zhao Q, Jin C, Guan C, Josine T (2012) Overexpression of AtchyB in Eustoma grandiflorum Shinn enhances its tolerance to high-light via zeaxanthin accumulation. Plant Mol Bio Rep 30:1–11. doi:10.1007/s11105-012-0460-4

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Genetically Modified Organism Major Projects of China: Breeding of Transformed Maize with Higher Nutrient Absorption Efficiency (2011ZX08003-005), National Natural Science Foundation of China (31271793) and 2010 PhD supervisor Doctoral Program of Higher Specialized Research Fund (20100032110060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Ji.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, C., Liu, X., Song, X. et al. Overexpression of a peroxiredoxin Q gene, SsPrxQ, in Eustoma grandiflorum Shinn enhances its tolerance to salt and high light intensity. Mol Breeding 33, 657–667 (2014). https://doi.org/10.1007/s11032-013-9982-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-013-9982-1

Keywords

Navigation