Molecular Breeding

, Volume 33, Issue 3, pp 639–655 | Cite as

Haplotype diversity and evolutionary history of the Lr34 locus of wheat

  • Abdulsalam Dakouri
  • Brent D. McCallum
  • Sylvie Cloutier


Leaf rust caused by Puccinia triticina is a major disease of wheat, and genetic resistance remains the best strategy for managing it. The resistance gene Lr34 has been key in the genetic management of wheat leaf rust worldwide. However, little is known about the geo-genetic diversity, history and origin of this unique gene. This study was conducted to provide a comprehensive analysis of the genetic diversity at the Lr34 locus of a world wheat germplasm collection. A total of 52 alleles were detected for the 10 Lr34 markers. On the basis of the Lr34-specific markers, the world collection was divided into five major haplotypes (H), of which H1 was consistently associated with the resistance phenotype Lr34+. Phenotypic data confirmed the susceptible phenotypes of H2, H3 and H4 and the susceptible or intermediate phenotype of H5. SNP12 (C/T) was the only mutation differentiating the resistant haplotype from the susceptible ones. Combined analysis of the 10 markers resulted in dividing the major haplotypes into 118 different sub-haplotypes. Structure and clustering analyses grouped them into two main clusters and seven sub-clusters. Variance between the main clusters represented the largest proportion of the total variation. H2, the only haplotype found in Aegilops tauschii, is the ancestral haplotype and H1 (Lr34+) likely arose after the advent of hexaploid wheat. Analysis of geographical distribution showed that H1 was more frequent in the Asian germplasm while H2 dominated the European germplasm. Lr34, a gain-of-function mutation, is hypothesized to have originated in Asia.


Lr34 Leaf rust Triticum aestivum Haplotype Puccinia triticina 



The authors are grateful to Elsa Reimer and Andrzej Walichnowski for technical support, Braulio Soto-Cerda for help with the Structure analysis and Michael Shillinglaw for figure preparation. AD was supported by Monsanto’s Beachell-Borlaug International Scholarship Program (MBBISP).

Supplementary material

11032_2013_9981_MOESM1_ESM.pdf (534 kb)
Online Resource 1 – Table S1 Description of germplasm including accession number, name, country of origin and genotypic data for 10 Lr34 locus markers (PDF 534 kb)
11032_2013_9981_MOESM2_ESM.pdf (167 kb)
Online Resource 2 – Table S2 Genotypes of the 112 accessions of Aegilops tauschii as defined by the four genic markers identified to date (PDF 166 kb)
11032_2013_9981_MOESM3_ESM.pdf (193 kb)
Online Resource 3 – Fig. S1 A schematic diagram of the Lr34 locus illustrating the locations of the ten molecular markers. Genetic distances are in cM and physical distance is in Kb (PDF 192 kb)
11032_2013_9981_MOESM4_ESM.pdf (19 kb)
Online Resource 4 – Table S3 Genotypes and phenotypes (MRS) of hexaploid wheat accessions Thatcher-Lr34, Thatcher, Odess Kaja 13 and Koktunkulskaja 332 (PDF 18 kb)
11032_2013_9981_MOESM5_ESM.pdf (59 kb)
Online Resource 5 – Table S4 Allele sizes and frequencies for 10 Lr34 locus specific markers assessed in a world collection of 310 wheat accessions (PDF 58 kb)
11032_2013_9981_MOESM6_ESM.pdf (15 kb)
Online Resource 6 – Table S5 Extent of the genetic diversity at the Lr34 locus as described by 10 molecular markers assayed on 310 accessions of a wheat germplasm collection (PDF 14 kb)
11032_2013_9981_MOESM7_ESM.pdf (137 kb)
Online Resource 7 – Fig. S2 Population structure analysis of the 310 accessions based on the 10 markers assessed at the Lr34 locus. A. Model-based Bayesian clustering performed using STRUCTURE for K = 2 groups. Each of the 310 accessions is represented by a column broken into red and green segments with length proportional to each of the K inferred ancestral groups (Lr34+ and Lr34-) shown underneath. B. Estimation of the number of sub-populations based on the Evanno criterion. Ad-hoc statistic ∆K (Evanno et al. 2005) for K values of 1 to 10 (PDF 137 kb)
11032_2013_9981_MOESM8_ESM.pdf (13 kb)
Online Resource 8 – Table S6 Analysis of molecular variance (AMOVA) of the 310 accessions of the world collection of wheat based on the Lr34 markers (PDF 13 kb)
11032_2013_9981_MOESM9_ESM.pdf (15 kb)
Online Resource 9 – Table S7 Sub-clusters pairwise Fst differences (PDF 14 kb)
11032_2013_9981_MOESM10_ESM.pdf (21 kb)
Online Resource 10 – Table S8 LD and r2 values for the ten markers at the Lr34 locus for the entire WC (PDF 21 kb)
11032_2013_9981_MOESM11_ESM.pdf (21 kb)
Online Resource 11 – Table S9 LD and r2 values for the ten markers at the Lr34 locus for the Lr34+ sub-haplotypes (PDF 20 kb)
11032_2013_9981_MOESM12_ESM.pdf (21 kb)
Online Resource 12 – Table S10 LD and r2 values for the ten markers at the Lr34 locus for the Lr34- sub-haplotypes (PDF 20 kb)
11032_2013_9981_MOESM13_ESM.pdf (17 kb)
Online Resource 13 – Table S11 Geographical distribution of Lr34 haplotypes (PDF 17 kb)


  1. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefPubMedGoogle Scholar
  2. Benham J, Jeung JU, Jasieniuk M, Kanazin V, Blake Y (1999) Genographer: a graphical tool for automated fluorescent AFLP and microsatellite analysis. J Agric Genome 4:3Google Scholar
  3. Borghi B (2001) The world wheat book: a history of wheat breeding, Italian wheat pool. In: Bonjean AP, Angus WJ (eds) Intercept. Lavoisier Publishing, Paris, France, pp 289–309Google Scholar
  4. Bossolini E, Krattinger SG, Keller B (2006) Development of simple sequence repeat markers specific for the Lr34 resistance region of wheat using sequence information from rice and Aegilops tauschii. Theor Appl Genet 113:1049–1062CrossRefPubMedGoogle Scholar
  5. Christiansen MJ, Andersen SB, Ortiz R (2002) Diversity changes in an intensively bred wheat germplasm during the 20th century. Mol Breed 9:1–11CrossRefGoogle Scholar
  6. Dakouri A, McCallum BD, Walichnowski AZ, Cloutier S (2010) Fine-mapping of the leaf rust Lr34 locus in Triticum aestivum (L.) and characterization of large germplasm collections support the ABC transporter as essential for gene function. Theor Appl Genet 121:373–384CrossRefPubMedGoogle Scholar
  7. Dakouri A, McCallum BD, Radovanovic N, Cloutier S (2013) Molecular and phenotypic characterization of seedling and adult plant leaf rust resistance in a world collection. Mol Breed 32:663–677. doi: 10.1007/s11032-013-9899-8 CrossRefPubMedCentralPubMedGoogle Scholar
  8. Dixon GE (1960) A review of wheat breeding in Kenya. Euphytica 9:209–221CrossRefGoogle Scholar
  9. Dyck PL (1987) The association of a gene for leaf rust resistance with the chromosome 7D suppressor of stem rust resistance in common wheat. Genome 29:467–469CrossRefGoogle Scholar
  10. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  11. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  12. Excoffier L, Lischer HE (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567CrossRefGoogle Scholar
  13. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  14. Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374CrossRefPubMedGoogle Scholar
  15. Fu YB, Peterson GW, Scoles G, Rossnagel B, Schoen DJ, Richards KW (2003) Allelic diversity changes in 96 Canadian oat cultivars released from 1886 to 2001. Crop Sci 43:1989–1995CrossRefGoogle Scholar
  16. Glaubitz JC (2004) CONVERT: a user friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 4:309–310CrossRefGoogle Scholar
  17. Hao C, Wang L, Ge H, Dong Y, Zhang X (2011) Genetic diversity and linkage disequilibrium in Chinese bread wheat (Triticum aestivum L.) revealed by SSR markers. PLoS ONE 6:e17279CrossRefPubMedCentralPubMedGoogle Scholar
  18. Hedrick PW (1987) Gametic disequilibrium measures: proceed with caution. Genetics 117:331–341PubMedGoogle Scholar
  19. Hiebert CW, Fetch TG, Zegeye T, Thomas JB, Somers DJ, Humphreys DG, McCallum BD, Cloutier S, Singh D, Knott DR (2010) Genetics and mapping of seedling resistance to Ug99 stem rust in Canadian wheat cultivars ‘Peace’ and ‘AC Cadillac’. Theor Appl Genet 122:143–149CrossRefPubMedGoogle Scholar
  20. Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738PubMedGoogle Scholar
  21. Kolmer JA, Singh RP, Garvin DF, Viccars L, William HM, Huerta-Espino JH, Obonnaya FC, Raman H, Orford S, Bariana HS, Lagudah ES (2008) Analysis of the Lr34/Yr18 rust resistance region in wheat germplasm. Crop Sci 48:1841–1852CrossRefGoogle Scholar
  22. Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363CrossRefPubMedGoogle Scholar
  23. Krattinger SG, Lagudah ES, Wicker T, Risk JM, Ashton AR, Selter LL, Matsumoto T, Keller B (2011) Lr34 multi-pathogen resistance ABC transporter: molecular analysis of homoeologous and orthologous genes in hexaploid wheat and other grass species. Plant J 65:392–403CrossRefPubMedGoogle Scholar
  24. Krattinger SG, Jordan DR, Mace ES, Raghavan C, Luo MC, Keller B, Lagudah ES (2013) Recent emergence of the wheat Lr34 multi-pathogen resistance: insight from haplotype analysis in wheat, rice, sorghum and Aegilops tauschii. Theor Appl Genet 126:663–672CrossRefPubMedGoogle Scholar
  25. Lagudah ES, McFadden H, Singh RP, Huerta-Espino J, Bariana HS, Spielmeyer W (2006) Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet 114:21–30CrossRefPubMedGoogle Scholar
  26. Lagudah ES, Krattinger SG, Herrera-Foessel S, Singh RP, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter LL, Keller B (2009) Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet 119:889–898CrossRefPubMedGoogle Scholar
  27. Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129CrossRefPubMedGoogle Scholar
  28. McCallum BD, Fetch T, Chong J (2007) Cereal rust control in Canada. Aust J Agric Res 58:639–647CrossRefGoogle Scholar
  29. McCallum BD, Cloutier S, Hiebert C, Jordan M (2009) Leaf tip necrosis co-segregates with seedling leaf rust resistance conditioned by Lr34 at low temperatures. In: Proceedings of the 12th international cereal rusts and powdery mildews conference, October 13–16, Antalya, TurkeyGoogle Scholar
  30. McCallum BD, Humphreys DG, Somers DJ, Dakouri A, Cloutier S (2012) Allelic variation for the rust resistance gene Lr34/Yr18 in Canadian wheat cultivars. Euphytica 183:261–274CrossRefGoogle Scholar
  31. Nei M (1973) The theory and estimation of genetic distance period. In: Morton NE (ed) Genetic structure of populations. University of Hawaii Press, Honolulu, pp 45–54Google Scholar
  32. Peterson RF, Campbell AB, Hannah AE (1948) A diagrammatic scale for estimating rust intensity of leaves and stems of cereals. Can Res Sec C 26:496–500Google Scholar
  33. Polzin T, Daneshmand SV (2003) On Steiner trees and minimum spanning trees in hypergraphs. Oper Res Let 31:12–20CrossRefGoogle Scholar
  34. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  35. Roussel V, Koenig J, Beckert M, Balfourier F (2004) Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes. Theor Appl Genet 108:920–930CrossRefPubMedGoogle Scholar
  36. Roussel V, Leisova L, Exbrayat F, Stehno Z, Balfourier F (2005) SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000. Theor Appl Genet 111:162–170CrossRefPubMedGoogle Scholar
  37. Singh RP (1993) Genetic association of gene Bdv1 for tolerance to barley yellow dwarf virus with genes Lr34 and Yr18 for adult plant resistance to rusts in bread wheat. Plant Dis 77:1103–1106CrossRefGoogle Scholar
  38. Singh RP, William HM, Huerta-Espino J, Rosewarne G (2004) Wheat rust in Asia: meeting the challenges with old and new technologies. In: Fisher T (ed) Proceedings of the 4th international crop science congress, new direction for a diverse planet. BPA Print Group Pty Ltd, Gosford, pp 1–13Google Scholar
  39. Singh D, Park RF, McIntosh RA (2007) Characterisation of wheat leaf rust resistance gene Lr34 in Australian wheats using components of resistance and the linked molecular marker csLV34. Austr J Agric Res 58:1106–1114CrossRefGoogle Scholar
  40. Sneath PHA, Sokal RR (1973) Numerical taxonomy: the principles and practice of numerical classification. WH Freeman, San FranciscoGoogle Scholar
  41. Spielmeyer W, McIntosh RA, Kolmer J, Lagudah ES (2005) Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust cosegregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet 111:731–735CrossRefPubMedGoogle Scholar
  42. Spielmeyer W, Singh RP, McFadden H, Wellings CR, Huerta-Espino J, Kong X, Appels R, Lagudah ES (2008) Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34/Yr18: a disease resistance locus effective against multiple pathogens in wheat. Theor Appl Genet 116:481–490CrossRefPubMedGoogle Scholar
  43. Van Berloo R (1999) GGT: software for the display of graphical genotypes. J Hered 90:328–329CrossRefGoogle Scholar
  44. Van Beuningen LT, Busch RH (1997) Genetic diversity among North American spring wheat cultivars: I. Analysis of the coefficient of parentage matrix. Crop Sci 37:570–579CrossRefGoogle Scholar
  45. Wicker T, Krattinger SG, Lagudah ES, Komatsuda T, Pourkheirandish M, Matsumoto T, Cloutier S, Reiser L, Kanamori H, Sato K, Perovic D, Stein N, Keller B (2009) Analysis of intraspecies diversity in wheat and barley genomes identifies breakpoints of ancient haplotypes and provides insight into the structure of diploid and hexaploid Triticeae gene pools. Plant Physiol 149:258–270CrossRefPubMedCentralPubMedGoogle Scholar
  46. Yeh FCR, Yang TJ, Boyle Z, Ye J, Xiyan M (2000) PopGene32, Microsoft Windows-based freeware for population genetic analysis, version 1.32. Molecular Biology and Biotechnology Centre, University of Alberta, EdmontonGoogle Scholar
  47. Zhang LY, Liu DC, Guo XL, Yang WL, Sun JZ, Wang DW, Sourdille P, Zhang AM (2011) Investigation of genetic diversity and population structure of common wheat cultivars in northern China using DArT markers. BMC Genet 12:42CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Her Majesty the Queen in Rights of Canada 2013

Authors and Affiliations

  • Abdulsalam Dakouri
    • 1
    • 2
  • Brent D. McCallum
    • 1
  • Sylvie Cloutier
    • 1
    • 2
  1. 1.Agriculture and Agri-Food CanadaCereal Research CentreWinnipegCanada
  2. 2.Department of Plant ScienceUniversity of ManitobaWinnipegCanada

Personalised recommendations