Molecular Breeding

, Volume 33, Issue 2, pp 415–424 | Cite as

Oil palm (Elaeis guineensis Jacq.) linkage map, and quantitative trait locus analysis for sex ratio and related traits

  • Kittipat Ukoskit
  • Vipavee Chanroj
  • Ganlayarat Bhusudsawang
  • Kwanjai Pipatchartlearnwong
  • Sithichoke Tangphatsornruang
  • Somvong Tragoonrung


Sex ratio and shell-thickness type are among the main components determining yield in oil palm. An integrated linkage map of oil palm was constructed based on 208 offspring derived from a cross between two tenera palms differing in inherited sex ratio. The map consisted of 210 genomic simple sequence repeats (SSRs), 28 expressed sequence tag SSRs, 185 amplified fragment length polymorphism markers, and the Sh locus, which controls shell-thickness phenotype, distributed across 16 linkage groups covering 1,931 cM, with an average marker distance of 4.6 cM. Quantitative trait locus (QTL) analysis identified eight QTLs across six linkage groups associated with sex ratio and related traits. These QTLs explained 8.1–13.1 % of the total phenotypic variance. The QTL for sex ratio on linkage group 8 overlapped with a QTL for number of male inflorescences. In most cases a specific QTL allele combination was responsible for genotype class mean differences, suggesting that most QTLs in heterozygous oil palm are likely to be segregating for multiple alleles with different degrees of dominance. In addition, two new SSRs were shown to flank the major Sh locus controlling the fruit variety type in oil palm.


Oil palm Sex ratio QTL mapping 



This study was supported by grants from the National Centre for Genetic Engineering and Biotechnology (BIOTEC), Thailand.

Supplementary material

11032_2013_9959_MOESM1_ESM.doc (22 kb)
Supplementary material 1 (DOC 22 kb)
11032_2013_9959_MOESM2_ESM.tiff (35 kb)
Supplementary material 2 (TIFF 35 kb)
11032_2013_9959_MOESM3_ESM.tiff (28 kb)
Supplementary material 3 (TIFF 27 kb)
11032_2013_9959_MOESM4_ESM.tiff (33 kb)
Supplementary material 4 (TIFF 32 kb)
11032_2013_9959_MOESM5_ESM.tiff (18 kb)
Supplementary material 5 (TIFF 17 kb)
11032_2013_9959_MOESM6_ESM.xls (51 kb)
Supplementary material 6 (XLS 51 kb)


  1. Adam H, Jouannic S, Morcillo F, Richaud F, Duval Y, Tregear J (2006) MADS box genes in oil palm (Elaeis guineensis): patterns in the evolution of the SQUAMOSA, DEFICIENS, GLOBOSA, AGAMOUS, and SEPALLATA. J Mol Evol 62:15–31PubMedCrossRefGoogle Scholar
  2. Adam H, Jouannic S, Morcillo F, Verdeil JL, Duval Y, Tregear JW (2007a) Determination of flower structure in Elaeis guineensis: do palms use the same homeotic genes as other species? Ann Bot 100:1–12PubMedCrossRefGoogle Scholar
  3. Adam H, Jouannic S, Orieux Y, Morcillo F, Richaud F, Duval Y, Tregear JW (2007b) Functional characterization of MADS box genes involved in the determination of oil palm flower structure. J Exp Bot 58:1245–1259PubMedCrossRefGoogle Scholar
  4. Barrett B, Baird I, Woodfield D (2005) A QTL analysis of white clover seed production. Crop Sci 45:1844–1850CrossRefGoogle Scholar
  5. Beirnaert A, Vanderweyen R (1941) Contribution à l’étude génétique et biométrique des variétés d’Elaeis guineensis Jacq. Publications de l’Institut National pour l’Etude Agronomique du Congo Belge. Série scientifique no 27Google Scholar
  6. Benbouza H, Jacquemin JM, Baudoin T, Mergeai G (2006) Optimization of a reliable, fast, cheap and sensitive silver staining method to detect SSR markers in polyacrylamide gels. Biotechnol Agron Soc Environ 10:77–81Google Scholar
  7. Billotte N, Marseillac N, Risterucci AM, Adon B, Brottier P, Baurens FC, Singh R, Herrán A, BillotC A, Amblard P, Durand-Gasselin T, Courtois B, Asmono D, Cheah SC, Rohde W, Ritter E, Charrier A (2005) Microsatellite-based high density linkage map in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 110:754–765PubMedCrossRefGoogle Scholar
  8. Billotte N, Jourjon MF, Marseillac N, Berger A, Flori A, Asmady H, Adon B, Singh R, Nouy B, Potier F, Cheah SC, Rohde W, Ritter E, Courtois B, Charrier A, Mangin B (2010) QTL detection by multi-parent linkage mapping in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 120:1673–1687PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bishop DT, Cannings C, Skolnick M, Williamson JA (1983) The number of polymorphic clones required to map the human genome. In: Weir BS (ed) Statistical analysis of DNA sequence data. Marcel and Dekker, New York, pp 181–200Google Scholar
  10. Coen ES, Meyerowitz EM (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37PubMedCrossRefGoogle Scholar
  11. Corley RHV (1977) Oil palm yield components and yield cycles. In: Earp DA, Newall W (eds) International developments in oil palm. Incorporated Society of Planters, Kuala Lumpur, Malaysia, pp 116–129Google Scholar
  12. Corley RHV, Tinker PB (2003) In: Corley RHV, Tinker PB (eds) The oil palm, 4th edn. Wiley-Blackwell, OxfordCrossRefGoogle Scholar
  13. Gawel N, Jarret R (1991) A modified CTAB DNA extraction protocol for Musa and Ipomea. Plant Mol Biol Rep 9:262–266CrossRefGoogle Scholar
  14. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137PubMedGoogle Scholar
  15. Hackett CA, Broadfoot LB (2003) Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity 90:33–38PubMedCrossRefGoogle Scholar
  16. Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877PubMedCrossRefGoogle Scholar
  17. Hulbert SH, Ilott TW, Legg EJ, Lincoln SE, Lander ES, Michelmore RW (1988) Genetic analysis of the fungus, Bremia lactucae, using restriction fragment length polymorphisms. Genetics 120:947–958PubMedGoogle Scholar
  18. Kaufmann K, Muino JM, Jauregui R, Airoldi CA, Smaczniak C, Krajewski P, Angenent GC (2009) Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol 7:854–875CrossRefGoogle Scholar
  19. Maria M, Clyde MM, Cheah SC (1995) Cytological analysis of Elaeis guineensis (tenera) chromosomes. Elaeis 7:122–134Google Scholar
  20. Martins WS, Lucas DC, Neves KF, Bertioli DJ (2009) WebSat—a web software for microsatellite marker development. Bioinformation 3:282–283PubMedCentralPubMedCrossRefGoogle Scholar
  21. Mason TG, Lewin CJ (1925) Growth and correlation in the oil-palm (Elaeis guineensis). Ann Appl Biol 12:410–421CrossRefGoogle Scholar
  22. Mayes S, Jack PL, Marshall DF, Corley RHV (1997) Construction of a RFLP genetic linkage map for oil palm (Elaeis guineensis Jacq.). Genome 40:116–122PubMedCrossRefGoogle Scholar
  23. Moretzsohn MC, Nunes CDM, Ferreira ME, Grattapaglia D (2000) RAPD linkage mapping of the shell thickness locus in oil palm (Elaeis guineensis Jacq.). Theor Appl Genet 100:63–70CrossRefGoogle Scholar
  24. Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127:181–197PubMedGoogle Scholar
  25. Rance KA, Mayes S, Price Z, Jack PL, Corley RHV (2001) Quantitative trait loci for yield components in oil palm (Elaeis guineensis Jacq). Theor Appl Genet 103:1302–1310CrossRefGoogle Scholar
  26. Rival A, Beule T, Barre P, Hamon S, Duval Y, Noirot M (1997) Comparative flow cytometric estimation of nuclear DNA content in oil palm (Elaeis guineensis Jacq.) tissue cultures and seed-derived plants. Plant Cell Rep 16:884–887CrossRefGoogle Scholar
  27. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  28. Seng TY, Mohamed Saad SH, Chin CW, Ting NC, Harminder Singh RS, Zaman FQ, Tan SG, Syed Alwee SSR (2011) Genetic linkage map of a high yielding FELDA Deli × Yangambi oil palm cross. PLoS ONE 6(11):e26593PubMedCentralPubMedCrossRefGoogle Scholar
  29. Singh R, Tan SG, Panandam JM, Rahman RA, Ooi LCL, Low ETL, Sharma M, Jansen J, Cheah SC (2009) Mapping quantitative trait loci (QTLs) for fatty acid composition in an interspecific cross of oil palm. BMC Plant Biol 9:114PubMedCentralPubMedCrossRefGoogle Scholar
  30. Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066PubMedCrossRefGoogle Scholar
  31. Van Ooijen J, Voorrips R (2001) JoinMap v. 3, software in the calculation of genetic linkage maps. Plant Research International, Wageningen, The NetherlandsGoogle Scholar
  32. Van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2002) MapQTL 4.0, software for the calculation of QTL positions on genetic maps. Plant Research International, Wageningen, The NetherlandsGoogle Scholar
  33. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  34. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 11:4407–4414CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Kittipat Ukoskit
    • 1
  • Vipavee Chanroj
    • 1
  • Ganlayarat Bhusudsawang
    • 1
  • Kwanjai Pipatchartlearnwong
    • 1
  • Sithichoke Tangphatsornruang
    • 2
  • Somvong Tragoonrung
    • 2
  1. 1.Department of Biotechnology, Faculty of Science and TechnologyThammasat UniversityKlong LuangThailand
  2. 2.National Center for Genetic Engineering and BiotechnologyKlong LuangThailand

Personalised recommendations