Molecular Breeding

, Volume 33, Issue 2, pp 341–348 | Cite as

Genetic mapping of non-target-site resistance to a sulfonylurea herbicide (Envoke®) in Upland cotton (Gossypium hirsutum L.)

  • Gregory Thyssen
  • Jack C. McCarty
  • Ping Li
  • Johnie N. Jenkins
  • David D. Fang


Acetolactate synthase (ALS) is responsible for a rate-limiting step in the synthesis of essential branched-chain amino acids. Resistance to ALS-inhibiting herbicides, such as trifloxysulfuron sodium (Envoke®), can be due to mutations in the target gene itself. Alternatively, plants may exhibit herbicide tolerance through reduced uptake and translocation or increased metabolism of the herbicide. The diverse family of cytochrome P450 proteins has been suggested to be a source of novel herbicide metabolism in both weed and crop plants. In this study we generated a mapping population between resistant and susceptible cotton (Gossypium hirsutum L.) cultivars. We found that both cultivars possess identical and sensitive ALS sequences; however, the segregation of resistance in the F2 progeny was consistent with a single dominant gene. Here we report the closely linked genetic markers and approximate physical location on chromosome 20 of the source of Envoke herbicide susceptibility in the cotton cultivar Paymaster HS26. There are no P450 proteins in the corresponding region of the G. raimondii Ulbr. genome, suggesting that an uncharacterized molecular mechanism is responsible for Envoke herbicide tolerance in G. hirsutum. Identification of this genetic mechanism will provide new opportunities for exploiting sulfonylurea herbicides for management of both weeds and crop plants.


Cotton Herbicide resistance Non-target-site resistance (NTSR) Acetolactate synthase (ALS) Acetohydroxyacid synthase (AHAS) Sulfonylurea Envoke® Trifloxysulfuron sodium 



This research was funded by United States Department of Agriculture–Agricultural Research Service CRIS project 6435-21000-017-00D. We thank Mr. Russell Hayes for assisting with the field experiments. Our appreciation goes to Mrs. Sheron Simpson and Dr. Brian Scheffler at the Genomics and Bioinformatics Research Unit at Stoneville, MS for their excellent support in SSR marker analysis. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture, which is an equal opportunity provider and employer.


  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402PubMedCentralPubMedCrossRefGoogle Scholar
  2. Askew SD, Wilcut JW (2002) Absorption, translocation, and metabolism of foliar-applied CGA 362622 in cotton, peanut, and selected weeds. Weed Sci 50(3):293–298CrossRefGoogle Scholar
  3. Barrett M (1995) Metabolism of herbicides by cytochrome P450 in corn. Drug Metabol Drug Interact 12(3–4):299–315PubMedGoogle Scholar
  4. Blenda A, Fang DD, Rami JF, Garsmeur O, Luo F, Lacape JM (2012) A high density consensus genetic map of tetraploid cotton that integrates multiple component maps through molecular marker redundancy check. PLoS ONE 7(9):e45739PubMedCentralPubMedCrossRefGoogle Scholar
  5. Chaleff RS, Mauvais CJ (1984) Acetolactate synthase is the site of action of two sulfonylurea herbicides in higher plants. Science 224(4656):1443–1445PubMedCrossRefGoogle Scholar
  6. Chaleff RS, Ray TB (1984) Herbicide-resistant mutants from tobacco cell cultures. Science 223(4641):1148–1151PubMedCrossRefGoogle Scholar
  7. Délye C (2013) Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade. Pest Manag Sci 69(2):176–187PubMedCrossRefGoogle Scholar
  8. Didierjean L, Gondet L, Perkins R, Lau SM, Schaller H, O’Keefe DP, Werck-Reichhart D (2002) Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. Plant Physiol 130(1):179–189PubMedCentralPubMedCrossRefGoogle Scholar
  9. Duggleby RG, Pang SS, Yu H, Guddat LW (2003) Systematic characterization of mutations in yeast acetohydroxyacid synthase. Euro J Biochem 270(13):2895–2904CrossRefGoogle Scholar
  10. Fang DD, Yu J (2012) Addition of 455 microsatellite marker loci to the high density Gossypium hirsutum TM-1 × G. barbadense 3–79 genetic map. J Cotton Sci 16:229–248Google Scholar
  11. Fang DD, Xiao J, Canci PC, Cantrell RG (2010) A new SNP haplotype associated with blue disease resistance gene in cotton (Gossypium hirsutum L.). Theor Appl Genet 120(5):943–953PubMedCrossRefGoogle Scholar
  12. Frear DS (1995) Wheat microsomal cytochrome P450 monooxygenases: characterization and importance in the metabolic detoxification and selectivity of wheat herbicides. Drug Metabol Drug Interact 12(3–4):329–357PubMedGoogle Scholar
  13. Grula JW, Hudspeth RL, Hobbs SL, Anderson DM (1995) Organization, inheritance and expression of acetohydroxyacid synthase genes in the cotton allotetraploid Gossypium hirsutum. Plant Mol Biol 28(5):837–846PubMedCrossRefGoogle Scholar
  14. Haughn G, Somerville C (1986) Sulfonylurea-resistant mutants of Arabidopsis thaliana. Mol Gen Genet 204(3):430–434CrossRefGoogle Scholar
  15. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  16. Matsunaka S (1968) Propanil hydrolysis: inhibition in rice plants by insecticides. Science 160(3834):1360–1361PubMedCrossRefGoogle Scholar
  17. McCourt JA, Pang SS, King-Scott J, Guddat LW, Duggleby RG (2006) Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proc Natl Acad Sci USA 103(3):569–573PubMedPubMedCentralCrossRefGoogle Scholar
  18. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88(21):9828–9832PubMedPubMedCentralCrossRefGoogle Scholar
  19. Minton BW, Senseman SA, Cothren JT, Chandler JM, Wells JW (2005) Cotton response to CGA-362622 applied alone and in combination with selected insecticides. Weed Technol 19(2):244–250CrossRefGoogle Scholar
  20. Minton B, Matocha M, Senseman SA (2008) The Influence of malathion on trifloxysulfuron absorption and translocation in cotton. J Cotton Sci 12(1):48–52Google Scholar
  21. Nelson DR (2009) The cytochrome P450 homepage. Hum Genomics 4(1):59–65PubMedCentralPubMedGoogle Scholar
  22. Nelson DR, Schuler MA, Paquette SM, Werck-Reichhart D, Bak S (2004) Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol 135(2):756–772PubMedCentralPubMedCrossRefGoogle Scholar
  23. Newhouse K, Singh B, Shaner D, Stidham M (1991) Mutations in corn (Zea mays L.) conferring resistance to imidazolinone herbicides. Theor Appl Genet 83(1):65–70PubMedCrossRefGoogle Scholar
  24. Owen MJ, Goggin DE, Powles SB (2012) Non-target-site-based resistance to ALS-inhibiting herbicides in six Bromus rigidus populations from Western Australian cropping fields. Pest Manag Sci 68(7):1077–1082PubMedCrossRefGoogle Scholar
  25. Pan G, Zhang X, Liu K, Zhang J, Wu X, Zhu J, Tu J (2006) Map-based cloning of a novel rice cytochrome P450 gene CYP81A6 that confers resistance to two different classes of herbicides. Plant Mol Biol 61(6):933–943PubMedCrossRefGoogle Scholar
  26. Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J et al (2012) Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. Nature 492(7429):423–427PubMedCrossRefGoogle Scholar
  27. Petit C, Duhieu B, Boucansaud K, Délye C (2010) Complex genetic control of non-target-site-based resistance to herbicides inhibiting acetyl-coenzyme A carboxylase and acetolactate-synthase in Alopecurus myosuroides Huds. Plant Sci 178(6):501–509CrossRefGoogle Scholar
  28. Porterfield D, Wilcut JW, Clewis SB, Edmisten KL (2002) Weed-free yield response of seven cotton (Gossypium hirsutum) cultivars to CGA-362622 postemergence. Weed Technol 16(1):180–183CrossRefGoogle Scholar
  29. Porterfield D, Wilcut JW, Wells JW, Clewis SB (2003) Weed management with CGA-362622 in transgenic and nontransgenic cotton. Weed Sci 51(6):1002–1009CrossRefGoogle Scholar
  30. Pozniak CJ, Birk IT, O’Donoughue LS, Ménard C, Hucl PJ, Singh BK (2004) Physiological and molecular characterization of mutation-derived imidazolinone resistance in spring wheat. Crop Sci 44(4):1434–1443CrossRefGoogle Scholar
  31. Rajasekaran K, Grula J, Hudspeth R, Pofelis S, Anderson D (1996a) Herbicide-resistant Acala and Coker cottons transformed with a native gene encoding mutant forms of acetohydroxyacid synthase. Mol Breed 2(4):307–319CrossRefGoogle Scholar
  32. Rajasekaran K, Grula JW, Anderson DM (1996b) Selection and characterization of mutant cotton (Gossypium hirsutum L.) cell lines resistant to sulfonylurea and imidazolinone herbicides. Plant Sci 119(1):115–124CrossRefGoogle Scholar
  33. Richardson RJ, Hatzios KK, Wilson HP (2003) Absorption, translocation, and metabolism of CGA 362622 in cotton and two weeds. Weed Sci 51(2):157–162CrossRefGoogle Scholar
  34. Robineau T, Batard Y, Nedelkina S, Cabello-Hurtado F, LeRet M, Sorokine O, Didierjean L, Werck-Reichhart D (1998) The chemically inducible plant cytochrome P450 CYP76B1 actively metabolizes phenylureas and other xenobiotics. Plant Physiol 118(3):1049–1056PubMedCentralPubMedCrossRefGoogle Scholar
  35. Sebastian SA, Fader GM, Ulrich JF, Forney DR, Chaleff RS (1989) Semidominant soybean mutation for resistance to sulfonylurea herbicides. Crop Sci 29(6):1403–1408CrossRefGoogle Scholar
  36. Swanson EB, Herrgesell MJ, Arnoldo M, Sippell DW, Wong RSC (1989) Microspore mutagenesis and selection: canola plants with field tolerance to the imidazolinones. Theor Appl Genet 78(4):525–530PubMedCrossRefGoogle Scholar
  37. Van Ooijen J (2006) JoinMap 4®: Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, WageningenGoogle Scholar
  38. Wright TR, Penner D (1998) Cell selection and inheritance of imidazolinone resistance in sugarbeet (Beta vulgaris). Theor Appl Genet 96(5):612–620CrossRefGoogle Scholar
  39. Yu Q, Abdallah I, Han H, Owen M, Powles S (2009) Distinct non-target site mechanisms endow resistance to glyphosate, ACCase and ALS-inhibiting herbicides in multiple herbicide-resistant Lolium rigidum. Planta 230(4):713–723PubMedCrossRefGoogle Scholar
  40. Yu JZ, Kohel RJ, Fang DD, Cho J, Van Deynze A, Ulloa M et al (2012) A high-density simple sequence repeat and single nucleotide polymorphism genetic map of the tetraploid cotton genome. G3 2(1):43–58PubMedPubMedCentralCrossRefGoogle Scholar
  41. Yuan JS, Tranel PJ, Stewart CN Jr (2007) Non-target-site herbicide resistance: a family business. Trends Plant Sci 12(1):6–13PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Gregory Thyssen
    • 1
  • Jack C. McCarty
    • 2
  • Ping Li
    • 1
  • Johnie N. Jenkins
    • 2
  • David D. Fang
    • 1
  1. 1.Cotton Fiber Bioscience Research UnitUSDA-ARS-SRRCNew OrleansUSA
  2. 2.Genetics and Precision Agriculture Research UnitUSDA-ARSMississippi StateUSA

Personalised recommendations