Skip to main content
Log in

Genome-wide association mapping for five major pest resistances in wheat

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Insect pests cause substantial damage to wheat production in many wheat-producing areas of the world. Amongst these, Hessian fly (HF), Russian wheat aphid (RWA), Sunn pest (SP), wheat stem saw fly (WSSF) and cereal leaf beetle (CLB) are the most damaging in the areas where they occur. Historically, the use of resistance genes in wheat has been the most effective, environmentally friendly, and cost-efficient approach to controlling pest infestations. In this study, we carried out a genome-wide association study with 2518 Diversity Arrays Technology markers which were polymorphic on 134 wheat genotypes with varying degrees of resistance to the five most destructive pests (HF, RWA, SP, WSSF and CLB) of wheat, using mixed linear model (MLM) analysis with population structure as a covariate. We identified 26 loci across the wheat genome linked to genes conferring resistance to these pests, of which 20 are potentially novel quantitative trait loci with significance values which ranged between 5 × 10−3 and 10−11. We used an in silico approach to identify probable candidate genes at some of the genomic regions and found that their functions varied from defense response with transferase activity to several genes of unknown function. Identification of potentially new loci associated with resistances to pests would contribute to more rapid marker-aided incorporation of new and diverse genes to develop new varieties with improved resistance against these pests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • AbuQamar S, Chai M, Luo H, Song F, Mengiste T (2008) Tomato protein kinase 1b mediates signaling of plant responses to necrotrophic fungi and insect herbivory. Plant Cell 20(7):1964–1983

    Article  PubMed  CAS  Google Scholar 

  • Ade J, DeYoung BJ, Golstein C, Innes RW (2007) Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. Proc Natl Acad Sci USA 104:2531–2536

    Article  PubMed  CAS  Google Scholar 

  • Anderson GA, Papa D, Peng JH, Tahir M, Lapitan NLV (2003) Genetic mapping of Dn7, a rye gene conferring resistance to the Russian wheat aphid in wheat. Theor Appl Genet 107:1297–1303

    Article  PubMed  CAS  Google Scholar 

  • Arzani A, Peng JH, Lapitan NLV (2004) DNA and morphological markers for a Russian wheat aphid resistance gene. Euphytica 139:167–172

    Article  CAS  Google Scholar 

  • Beres BL, Dosdall LM, Weaver DK, Carcamo HA, Spaner DM (2011) Biology and integrated management of wheat stem sawfly and the need for continuing research. Can Entomol 143:105–125

    Article  Google Scholar 

  • Bernoux M, Ellis JG, Dodds PN (2011) New insights in plant immunity signaling activation. Curr Opin Plant Biol 14:512–518

    Article  PubMed  CAS  Google Scholar 

  • Blodgett S, Tharp CI, Kephart K (2004) Cereal leaf beetle. Montana State University Extension Service

  • Bradbury JC, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  PubMed  CAS  Google Scholar 

  • Braun HJ, Atlin G, Payne T (2010) Multi-location testing as a tool to identify plant response to global climate change. Reynolds, CRP (Ed) Climate change and crop production, CABI, London, UK

  • Breseghello F, Sorrells MS (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Brodersen P, Petersen M, Pike HM, Olszak B, Skov S et al (2002) Knockout of Arabidopsis accelerated-cell-death11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense. Genes Dev 16:490–502

    Article  PubMed  CAS  Google Scholar 

  • Caplan JL, Mamillapalli P, Burch-Smith TM, Czymmek K, Dinesh-Kumar SP (2008) Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 132:449–462

    Article  PubMed  CAS  Google Scholar 

  • Chao S, Zhang W, Dubcovsky J, Sorrells M (2007) Evaluation of genetic diversity and genome-wide linkage disequilibrium among US wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Sci 47:1018–1030

    Article  CAS  Google Scholar 

  • Chen M, Echegaray E, Whitworth RJ, Wang H, Sloderbeck PE, Knutson A, Giles KL, Royer TA (2009) Virulence analysis of Hessian fly populations from Texas, Oklahoma, and Kansas. J Econ Entomol 102(2):774–780

    Article  PubMed  Google Scholar 

  • Comis D (2007) Virulent Hessian flies renew attack on U.S. wheat. U.S. Department of Agric. Agricultural Research. News and Events. 24 January 2007. http://www.ars.usda.gov/is/pr/2007/070124.htm

  • Conesa A, Gotz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics, Article ID 619832. doi:10.1155/2008/619832

  • Critchley BR (1998) Literature review of Sunn pest Eurygaster integriceps Put (Hemiptera; Scutelleridae). Crop Prot 17:271–287

    Article  Google Scholar 

  • Crossa J, Burgueño J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913. doi:10.1534/genetics.107.078659

    Article  PubMed  CAS  Google Scholar 

  • Darkoh C, El-Bouhssini M, Baum M, Clack B (2010) Characterization of a prolyl endoprotease from Eurygaster integriceps Puton (Sunn pest) infested wheat. Arch Insect Biochem 74(3):163–178

    Article  CAS  Google Scholar 

  • Detering F, Hunter E, Uszynski G, Wenzl P, Andrzej K (2010) A consensus genetic map of wheat: ordering 5,000 Wheat DArT markers. 20th ITMI & 2nd WGC Workshop, 1–5 September, Beijing

  • Dobrovolskaya O, Pshenichnikova TA, Arbuzova VS, Lohwasser U, Röder MS, Börner A (2007) Molecular mapping of genes determining hairy leaf character in common wheat with respect to other species of the Triticeae. Euphytica 155:285–293. doi:10.1007/s10681-006-9329-7

    Article  CAS  Google Scholar 

  • Dreisigacker S, Arief V, DeLacy I, Davenport G, Manes Y, Reynolds M, Ravi S, Dieters M, Crossa J (2008) Patterns of linkage disequilibrium in multiple populations. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P (eds) Proceedings of 11th international wheat genet symposium. Sydney University Press, Brisbane, pp 1–5. http://hdl.handle.net/2123/3326

  • El Bouhssini M, Lhaloui S, Hatchet JH, Mulitze D, Starks K (1987) Preliminary evaluation of Sawfly damage to small grains in Morocco. Rachis 6:29–31

    Google Scholar 

  • El Bouhssini M, Nachit M, Valkoun J, Abdalla O, Rihawi F (2008) Sources of resistance to Hessian fly (Diptera: Cecidomyiidae) in Syria identified among Aegilops species and synthetic derived bread wheat lines. Genet Resour Crop Evol 55:1215–1219

    Article  Google Scholar 

  • El Bouhssini M, Chen M, Lhaloui S, Zharmukhamedova G, Rihawi F (2009a) Virulence of Hessian fly (Diptera: Cecidomyiidae) in the Fertile Crescent. J Appl Entomol 133:381–385

    Article  Google Scholar 

  • El Bouhssini M, Street K, Joubi A, Ibrahim Z, Rihawi F (2009b) Sources of wheat resistance to Sunn pest, Eurygaster integriceps Puton, in Syria. Genet Resour Crop Evol 56:1065–1069

    Article  Google Scholar 

  • El Bouhssini M, Ogbonnaya FC, Ketata H, Mosaad MM, Street K, Amri A, Keser M, Rajaram S, Morgounov A, Rihawi F, Dabus A, Smith CM (2011a) Progress in host plant resistance in wheat to Russian wheat aphid (Hemiptera: Aphididae) in North Africa and West Asia. Aust J Crop Sci 5(9):1108–1113

    Google Scholar 

  • El Bouhssini M, Street K, Amri A, Mackay M, Ogbonnaya FC, Omran A, Abdalla O, Baum M, Dabbous A, Rihawi F (2011b) Sources of resistance in bread wheat to Russian wheat aphid (Diuraphis noxia) in Syria identified using the Focused Identification of Germplasm Strategy (FIGS). Plant Breed 130:96–97

    Article  Google Scholar 

  • El Bouhssini M, Ogbonnaya FC, Chen M, Lhaloui S, Rihawi F, Dabbous A (2012) Sources of resistance in primary synthetic hexaploid wheat (Triticum aestivum L.) to insect pests: Hessian fly, Russian wheat aphid and Sunn pest in the fertile crescent. Genetic Resour Crop Evol. doi:10.1007/s10722-012-9861-3

  • Emebiri LC, Oliver JR, Mrva K, Mares D (2010) Association mapping of late maturity α-amylase (LMA) activity in a collection of synthetic hexaploid wheat. Mol Breed 26:39–49

    Article  CAS  Google Scholar 

  • Fatehi F, Behamta MR, Zali AA (2009) Gene action for resistance to Sunn pest (Eurygester integriceps Put.) in bread wheat. Asian J Plant Sci 8(1):82–85

    Article  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  PubMed  CAS  Google Scholar 

  • Gallun RL, Patterson FL (1977) Monosomic analysis of wheat for resistance to Hessian fly. J Hered 68:223–226

    Google Scholar 

  • Gallun RL, Roberts JJ, Finney RE, Patterson FL (1973) Leaf pubescence of Weld grown wheat: a deterrant to oviposition by the cereal leaf beetle. J Environ Qual 2:333–334

    Article  Google Scholar 

  • Goldstein DB, Tate SK, Sisodiya SM (2003) Pharmacogenetics goes genomics. Nat Rev Genet 4:937–947

    Article  PubMed  CAS  Google Scholar 

  • Hariri G, Williams PC, Jaby EL-Haramein F (2000) Influence of Pentatomidae insects on the physical dough properties and two layered flat-bread baking quality of Syrian wheat. J Cereal Sci 31:111–118

    Article  Google Scholar 

  • Hedrick PW (1987) Gametic disequilibrium measures: proceed with caution. Genetics 117:331–374

    PubMed  CAS  Google Scholar 

  • Heyns I, Groenewald E, Marais F, Du Toit F, Tolmay V (2006) Chromosomal location of the Russian wheat aphid resistance gene, Dn5. Crop Sci 46:630–636

    Article  CAS  Google Scholar 

  • Houshmand S, Knox RE, Clarke FR, Clarke JM (2007) Microsatellite markers flanking a stem solidness gene on chromosome 3BL in durum wheat. Mol Breed 20:261–270

    Article  CAS  Google Scholar 

  • Inohara N, Nunez G (2003) NODs: intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol 3:371–382

    Article  PubMed  CAS  Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:e25

    Article  PubMed  CAS  Google Scholar 

  • Javahery M (1995) A technical review of Sunn pests (Heteroptea: Pentatomidae) with special references to Eurygaster integriceps Put. FAO Regional Office for the Near East, Cario, Egypt

    Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  PubMed  CAS  Google Scholar 

  • Kang HM et al (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    Article  PubMed  Google Scholar 

  • Knutson A, Swart J (2007) Hessian fly outbreaks showing up in many north Texas wheat fields. Southwest Farm Report. Southwest Farm Press, New York. http://southwestfarmpress.com/grains/041807-hessianfly/

  • Kong L, Ohm HW, Cambron SE, Williams CE (2005) Molecular mapping determines that Hessian fly resistance gene H9 is located on chromosome 1AS of wheat. Plant Breed 124:525–531

    Article  CAS  Google Scholar 

  • Kong L, Cambron SE, Ohm HW (2008) Hessian fly resistance genes H16 and H17 are mapped to a resistance gene cluster in the distal region of chromosome 1AS in wheat. Mol Breed 21:183–194. doi:10.1007/s11032-007-9119-5

    Article  CAS  Google Scholar 

  • Krill AM, Kirst M, Kochian LV, Buckler ES, Hoekenga OA (2010) Association and linkage analysis of Aluminium tolerance genes in maize. PLoS ONE 5(4):e9958

    Article  PubMed  Google Scholar 

  • Krupnov VA (2012) Wheat breeding for resistance to the Sunn pest (Eurygaster spp.): does risk occur? Russian J Genet Appl Res 2:79–84

    Article  Google Scholar 

  • Kulwal P, Ishikawa G, Benscher D, Feng Z, Yu L, Jadhav A, Mehetre S, Sorrells ME (2012) Association mapping for pre-harvest sprouting resistance in white winter wheat. Theor Appl Genet 125:793–805

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21(9):2128–2129

    Article  PubMed  CAS  Google Scholar 

  • Liu XM, Smith CM, Gill BS, Tolmay V (2001) Microsatellite markers linked to six Russian wheat aphid resistance genes in wheat. Theor Appl Genet 102:504–510

    Article  CAS  Google Scholar 

  • Liu XM, Smith CM, Gill BS (2002) Identification of microsatellite markers linked to Russian wheat aphid resistance genes Dn4 and Dn6. Theor Appl Genet 104:1042–1048

    Article  PubMed  CAS  Google Scholar 

  • Liu XM, Fritz AK, Reese JC, Wilde GE, Gill BS, Chen MS (2005a) H9, H10, and H11 compose a cluster of Hessian fly resistance genes in the distal gene-rich region of wheat chromosome 1AS. Theor Appl Genet 110:143–148

    Google Scholar 

  • Liu XM, Brown-Guedira GL, Hatchett JH, Owuoche JO, Chen MS (2005b) Genetic characterization and molecular mapping of a Hessian fly resistance gene (Hdic) transferred from T. turgidum ssp. Dicoccum to common wheat. Theor Appl Genet 111:1308–1315

    Article  PubMed  CAS  Google Scholar 

  • Liu XM, Gill BS, Chen MS (2005c) Hessian fly resistance gene H13 is mapped to a distal cluster of resistance genes in chromosome 6DS of wheat. Theor Appl Genet 111:243–249

    Article  PubMed  CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Natoli E, Araus-Ortega JL, Bensalem M et al (2006) A panel of elite accessions of durum wheat (Triticum durum Desf.) suitable for association mapping studies. Plant Genet Resour 4:79–85

    Article  CAS  Google Scholar 

  • Maldonado AM, Doerner P, Dixon RA, Lamb CJ, Cameron RKA (2002) A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419:399–403

    Article  PubMed  CAS  Google Scholar 

  • Marais GF, Horn M, Du Toit F (1994) Intergeneric transfer (rye to wheat) of a gene(s) for Russian wheat aphid resistance. Plant Breed 113:265–271

    Article  Google Scholar 

  • Massman J, Cooper B, Horsley R, Neate S, Macky RD, Chao S, Dong Y, Schwarz P, Muehlbauer GJ, Smith KP (2011) Genome-wide association mapping of Fusarium head blight resistance in contemporary barley breeding germplasm. Mol Breed 27:439–454

    Article  Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers WJ, Morris C, Appels R, Xia XC (2010) Catalogue of gene symbols for wheat: supplement. Ann Wheat Newsl 56:273–282

    Google Scholar 

  • Miller CA, Altinkut A, Lapitan NLV (2001) A microsatellite marker for tagging Dn2, a wheat gene conferring resistance to the Russian wheat aphid. Crop Sci 41:1584–1589

    Article  CAS  Google Scholar 

  • Moreno JL, Martin R, Castresana C (2005) Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. Plant J 41:451–463

    Article  PubMed  CAS  Google Scholar 

  • Morgante M, Salamini F (2003) From plant genomics to breeding practice. Curr Opin Biotechnol 14:214–219

    Article  PubMed  CAS  Google Scholar 

  • Mornhinweg DW, Bregitzer PP, Porter DR, Peairs FB, Baltensperger DD, Hein GL, Randolph TA, Koch M, Walker T (2009) Registration of ‘Sidney’ spring feed barley resistant to Russian wheat aphid. J Plant Regist 3:214–218. doi:10.3198/jpr2009.04.0205crc

    Article  Google Scholar 

  • Mulki MA, Jighly A, Ye G, Emebiri LC, Moody D, Ansari O, Ogbonnaya FC (2013) Association mapping for soilborne pathogen resistance in synthetic hexaploid wheat. Mol Breed 31:299–311. doi:10.1007/s11032-012-9790-z

    Article  CAS  Google Scholar 

  • Neumann K, Kobiljski B, Dencic S, Varshney RK, Borner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed 27:37–58

    Article  Google Scholar 

  • Nkongolo KK, Quick JS, Limin AE, Fowler DB (1991) Sources and inheritance of resistance to Russian wheat aphid in Triticum species amphiploids, Triticum tauschii. Can J Plant Sci 71:703–708

    Article  Google Scholar 

  • Ogbonnaya FC, Subrahmanyam NC, Moullet O, de Majnik J, Eagles HA, Brown JS, Eastwood RF, Kollmorgen J, Appels R, Lagudah ES (2001) Diagnostic DNA markers for cereal cyst nematode resistance in bread wheat. Aust J Agric Res 52:1367–1374

    Google Scholar 

  • Peng J, Wang H, Haley SD, Peairs FB, Lapitan NLV (2007) Molecular mapping of the Russian wheat aphid resistance gene Dn2414 in wheat. Crop Sci 47:2418–2429

    Article  CAS  Google Scholar 

  • Peng JH, Bai Y, Haley SD, Lapitan NLV (2009) Microsatellite-based molecular diversity of bread wheat germplasm and association mapping of wheat resistance to the Russian wheat aphid. Genetica 135:95–122

    Article  PubMed  CAS  Google Scholar 

  • Philips CR, Herbert DA, Kuhar TP, Reisig DD, Thomason WE, Malone S (2011) Fifty years of cereal leaf beetle in the U.S.: an update on its biology, management, and current research. J Integ Pest Mngmt 2(2):1. doi:10.1603/IPM11014

    Google Scholar 

  • Poznial CJ, Clarke JM, Clarke FR (2012) Potential for detection of marker–trait associations in durum wheat using unbalanced, historical phenotypic datasets. Mol Breed 30:1537–1550

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000a) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000b) Association mapping in structured populations. Am J Hum Genet 67:170–181

    Article  PubMed  CAS  Google Scholar 

  • Qi D, Deyoung BJ, Innes RW (2012) Structure–function analysis of the coiled-coil and leucine-rich repeat domains of the RPS5 disease resistance protein. Plant Physiol 158:1819–1832

    Article  PubMed  CAS  Google Scholar 

  • Radjabi G (1994) Analysis of sunn pest periodic outbreaks in Iran. Appl Entomol Phytopathol 61:1–13

    Google Scholar 

  • Ratcliffe RH, Hatchett JH (1997) Biology and genetics of the Hessian fly and resistance in wheat. In: Bondari K (ed) New developments in entomology. Research Signpost, Trivandrum, India, pp 47–56

    Google Scholar 

  • Ratcliffe RH, Cambron SE, Flanders KL, Bosque-Perez NA, Clement SL, Ohm HW (2000) Biotype composition of Hessian fly (Diptera: Cecidomyiidae) populations from the southeastern, mid-western, and northwestern United States and virulence to resistance genes in wheat. J Econ Entomol 94:1319–1328

    Article  Google Scholar 

  • Ravel C, Praud S, Murigneux A, Linossier L, Dardevet M, Balfourier F, Dufour P, Brunel D, Charmet G (2006) Identification of Glu-B1-1 as a candidate gene for the quantity of high molecular weight glutenin in bread wheat (Triticum aestivum L.) by means of an association study. Theor Appl Genet 112:738–743

    Article  PubMed  CAS  Google Scholar 

  • Rehman Arif MA, Nagel M, Neumann K, Kobiljski B, Lohwasser U, Borner A (2012) Genetic studies of seed longevity in hexaploid wheat using segregation and association mapping approaches. Euphytica 186:1–13

    Article  Google Scholar 

  • Rigden DJ, Mello LV, Bertioli DJ (2000) Structural modeling of a plant disease resistance gene product domain. Proteins 41:133–143

    Article  PubMed  CAS  Google Scholar 

  • Roberts JJ, Gallun RL (1984) Chromosome location of the H5 gene for resistance to the Hessian fly in wheat. J Hered 75:147–148

    Google Scholar 

  • Sanseverino W, Hermoso A, Alessandro R, Vlasova A, Andolfo G, Frusciante L, Lowy E, Roma G, Ercolano MR (2013) PRGdb 2.0: towards a community-based database model for the analysis of R-genes in plants. Nucleic Acids Res 41(D1):D1167–D1171

  • Sardesai N, Nemacheck JA, Subramanyam S, Williams CE (2005) Identification and mapping of H32, a new wheat gene conferring resistance to Hessian fly. Theor Appl Genet 111:1167–1173

    Article  PubMed  CAS  Google Scholar 

  • Shao F et al (2003) Cleavage of Arabidopsis PBS1 by a bacterial type III effector. Science 301:1230–1233

    Article  PubMed  CAS  Google Scholar 

  • Sherman JD, Weaver DK, Hofl ML, Sing SE, Buteler M, Lanning SP, Naruoka Y, Crutcher F, Blake NK, Martin JM, Lamb PF, Carlson GR, Talbert LE (2010) Identification of novel QTL for sawfly resistance in wheat. Crop Sci 50:73–86. doi:10.2135/cropsci2009.03.0145

    Article  Google Scholar 

  • Sillanpää MJ (2011) Overview of techniques to account for confounding due to population stratification and cryptic relatedness in genomic data association analyses. Heredity 106:511–519

    Article  PubMed  Google Scholar 

  • Takken FLW, Goverse A (2012) How to build a pathogen detector: structural basis of NB-LRR function. Curr Opin Plant Biol 15:1–10

    Article  Google Scholar 

  • Tommasini L, Schnurbusch T, Fossati D, Mascher F, Keller B (2007) Association mapping of Stagonospora nodorum blotch resistance in modern European winter wheat varieties. Theor Appl Genet 115:697–708

    Article  PubMed  CAS  Google Scholar 

  • Van der Biezen EA, Jones JDG (1998) The NB-ARC domain: a novel signaling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol 8:R226–R227

    Article  PubMed  Google Scholar 

  • Wang T, Xu SS, Harris MO, Hu J, Liu L, Cai X (2006) Genetic characterization and molecular mapping of Hessian fly resistance genes derived from Aegilops tauschii in synthetic wheat. Theor Appl Genet 113:611–618. doi:10.1007/s00122-006-0325-z

    Article  PubMed  CAS  Google Scholar 

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity Arrays Technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci USA 101:9915–9920

    Article  PubMed  CAS  Google Scholar 

  • White J, Law JR, Mackay I, Chalmers KJ, Smith JSC, Kilian A, Powell W (2008) The genetic diversity of UK, US and Australian cultivars of Triticum aestivum measured by DArT markers and considered by genome. Theor Appl Genet 116:439–453

    Google Scholar 

  • Whitworth RJ (2007) Prevent Hessian fly through timely destruction of infested stubble and volunteer wheat. Newsarchive. http://www.kswheat.com/news.asp?id_99&newsid_189

  • Xu SS, Cai X, Wang T, Harris MO, Friesen TL (2006) Registration of two synthetic hexaploid wheat germplasms resistant to Hessian fly. Crop Sci 46:1401–1402. doi:10.2135/cropsci2005.06-0137

    Article  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160

    Article  PubMed  CAS  Google Scholar 

  • Yu LX, Morgounov A, Wanyera R, Keser M, Singh SK, Sorrells M (2012) Identification of Ug99 stem rust resistance loci in winter wheat germplasm using genome-wide association analysis. Theor Appl Genet 125:749–758

    Article  PubMed  Google Scholar 

  • Zhang Z et al (2010) Mixed linear model approach adapted for genome wide association studies. Nat Genet 42:355–360

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Mao X, Zhang J, Chang X, Jing R (2013) Single nucleotide polymorphisms and association analysis of drought resistance gene TaSnRK2.8 in common wheat. Plant Physiol Biochem 70:174–181. doi:10.1016/j.plaphy.2013.04.010

    Article  PubMed  CAS  Google Scholar 

  • Zhao HX, Liu XM, Chen MS (2006) H22, a major resistance gene to the Hessian fly (Mayetiola destructor), is mapped to the distal region of wheat chromosome 1DS. Theor Appl Genet 113:1491–1496

    Article  PubMed  CAS  Google Scholar 

  • Zheng G, Yang Y, Zhu X, Elston RC (2012) Analysis of genetic association studies. Ser Stat Biol Health. doi:10.1007/978-1-4614-2245-7

Download references

Acknowledgments

The authors would like to thank Basem Edris for his technical assistance. Grains Research and Development Cooperation, ACT, Australia and International Centre for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. C. Ogbonnaya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 21 kb)

Supplementary material 2 (XLSX 21 kb)

11032_2013_9924_MOESM3_ESM.doc

Supplementary Fig. 1 Results of the evaluation of the 134 wheat genotypes included in the study according to their reaction to Russian Wheat Aphid (RWA), Sunn pest (SP), Hessian fly (HF), Wheat stem saw fly (WSSF) and cereal leaf beetle (CB). S: Susceptible, MR: Moderate resistant, R: Resistant. (DOC 53 kb)

11032_2013_9924_MOESM4_ESM.doc

Supplementary Fig. 2 Synthetic hexaploid wheat resistant to Syrian biotype of Hessian fly showing the dead larvae suggesting that the mechanism of resistance is antibiosis. (DOC 969 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joukhadar, R., El-Bouhssini, M., Jighly, A. et al. Genome-wide association mapping for five major pest resistances in wheat. Mol Breeding 32, 943–960 (2013). https://doi.org/10.1007/s11032-013-9924-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-013-9924-y

Keywords

Navigation