Skip to main content
Log in

Identification of quantitative trait loci contributing to yield and seed quality parameters under terminal drought in barley advanced backcross lines

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Drought is a major limiting factor for barley production, especially in the primary areas of its cultivation. Wild barley represents a major source of favourable alleles for increasing the genetic variation for multiple traits including resistance to both biotic and abiotic stresses. We used advanced backcross quantitative trait locus (AB-QTL) analysis of a BC3-doubled haploid population developed between the cultivated parent Brenda (Hordeum vulgare ssp. vulgare) and the wild accession HS584 (H. vulgare ssp. spontaneum) to study the contribution of wild barley in improving various agronomic and seed quality traits under post-anthesis drought. The experiment was carried out at two different locations (IPK, Gatersleben and Nordsaat, Böhnshausen) and terminal drought was imposed by withholding water or spraying with potassium iodide at 10 days after flowering under greenhouse or field conditions, respectively. QTL analysis indicated that wild barley contributed favourably to most of the traits studied under both control and drought conditions. A total of seven hot-spot QTL regions with co-localizing QTL for various traits harboured more than 80 % of the stable QTL detected in the present study. For yield and thousand-grain weight and their respective drought tolerance indices, most of the QTL were derived from Brenda. On the other hand, for traits like seed length and seed nitrogen content, all the QTL were contributed by HS584, the parent having higher trait value. A significantly reduced carbon/nitrogen (C/N) ratio in the selected contrasting inferior lines compared to superior ones suggests that C/N ratio could be a potential parameter for screening not just seed quality parameters but also grain weight performance under terminal drought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acreche MM, Slafer GA (2009) Variation of grain nitrogen content in relation with grain yield in old and modern Spanish wheats grown under a wide range of agronomic conditions in a Mediterranean region. J Agric Sci 147:657

    Article  CAS  Google Scholar 

  • Backes G, Graner A, Foroughi-Wehr B, Fischbeck G, Wenzel G, Jahoor A (1995) Localization of quantitative trait loci (QTL) for agronomic important characters by the use of a RFLP map in barley (Hordeum vulgare L.). Theor Appl Genet 90:294–302

    Article  PubMed  CAS  Google Scholar 

  • Barnabas B, Jager K, Feher A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell Environ 31:11–38

    CAS  Google Scholar 

  • Barua U, Chalmers K, Thomas W, Hackett C, Lea V, Jack P, Forster B, Waugh R, Powell W (1993) Molecular mapping of genes determining height, time to heading, and growth habit in barley (Hordeum vulgare). Genome 36:1080–1087

    Article  PubMed  CAS  Google Scholar 

  • Baum M, Grando S, Backes G, Jahoor A, Sabbagh A, Ceccarelli S (2003) QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’ × H. spontaneum 41–1. Theor Appl Genet 107:1215–1225

    Article  PubMed  CAS  Google Scholar 

  • Blum A (1998) Improving wheat grain filling under stress by stem reserve mobilisation (Reprinted from wheat: prospects for global improvement, 1998). Euphytica 100:77–83

    Article  Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Crop Pasture Sci 56:1159–1168

    Article  Google Scholar 

  • Blum A (2009) Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress. Field Crops Res 112:119–123

    Article  Google Scholar 

  • Bouche N, Fromm H (2004) GABA in plants: just a metabolite? Trends Plant Sci 9:110–115

    Article  PubMed  CAS  Google Scholar 

  • Bown AW, Shelp BJ (1997) The metabolism and functions of [gamma]-aminobutyric acid. Plant Physiol 115:1–5

    Google Scholar 

  • Boyer CD, Preiss J (1981) Evidence for independent genetic control of the multiple forms of maize endosperm branching enzymes and starch synthases. Plant Physiol 67:1141

    Article  PubMed  CAS  Google Scholar 

  • Briggs DE (ed) (1978) Barley. Chapman and Hall, New York

    Google Scholar 

  • Brooks A, Jenner CF, Aspinall D (1982) Effects of water deficit on endosperm starch granules and on grain physiology of wheat and barley. Funct Plant Biol 9:423–436

    Google Scholar 

  • Calderini DF, Reynolds MP, Slafer GA (1999) Genetic gains in wheat yield and associated physiological changes during the twentieth century. In: Satorre EH, Slafer GA (eds) Wheat: ecology and physiology of yield determination. Food Products Press, Binghamton, pp 351–377

    Google Scholar 

  • Ceccarelli S, Grando S, Baum M, Udupa SM (2004) Breeding for drought resistance in a changing climate. Challenges and strategies for dryland agriculture. Crop Science Society of America Inc. and American Society of Agronomy Inc., Madison, pp 167–190

    Google Scholar 

  • Ceccarelli S, Grando S, Baum M (2007) Participatory plant breeding in water-limited environments. Exp Agric 43:411–435

    Article  Google Scholar 

  • Ceccarelli S, Grando S, Maatougui M, Michael M, Slash M, Haghparast R, Rahmanian M, Taheri A, Al-Yassin A, Benbelkacem A (2010) Plant breeding and climate changes. J Agric Sci 148:627

    Article  Google Scholar 

  • Chevalier P, Lingle SE (1983) Sugar metabolism in developing kernels of wheat and barley. Crop Sci 23:272–277

    Article  CAS  Google Scholar 

  • Doganlar S, Frary A, Tanksley S (2000) The genetic basis of seed-weight variation: tomato as a model system. Theor Appl Genet 100(8):1267–1273

    Article  CAS  Google Scholar 

  • Dolferus R, Ji X, Richards RA (2011) Abiotic stress and control of grain number in cereals. Plant Sci 181:331–341

    Article  PubMed  CAS  Google Scholar 

  • Dorion S, Lalonde S, Saini HS (1996) Induction of male sterility in wheat by meiotic-stage water deficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism in anthers. Plant Physiol 111:137–145

    PubMed  CAS  Google Scholar 

  • Ellis RP, Forster BP, Robinson D, Handley LL, Gordon DC, Russell JR, Powell W (2000) Wild barley: a source of genes for crop improvement in the 21st century? J Exp Bot 51:9–17

    Article  PubMed  CAS  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics 141:1147

    PubMed  CAS  Google Scholar 

  • Fait A, Fromm H, Walter D, Galili G, Fernie AR (2008) Highway or byway: the metabolic role of the GABA shunt in plants. Trends Plant Sci 13:14–19

    Article  PubMed  CAS  Google Scholar 

  • Fan C, Xing Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  PubMed  CAS  Google Scholar 

  • Farquhar G, Richards R (1984) Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Funct Plant Biol 11:539–552

    CAS  Google Scholar 

  • Fereres E, Orgaz F, Gonzalez-Dugo V (2011) Reflections on food security under water scarcity. J Exp Bot 62:4079–4086

    Article  PubMed  CAS  Google Scholar 

  • Fischer R, Maurer R (1978) Drought resistance in spring wheat cultivars. I. Grain yield responses. Crop Pasture Sci 29:897–912

    Google Scholar 

  • Fonceka D, Tossim H-A, Rivallan R, Vignes H, Lacut E, de Bellis F, Faye I, Ndoye O, Leal-Bertioli SCM, Valls JFM, Bertioli DJ, Glaszmann J-C, Courtois B, Rami J-F (2012) Construction of chromosome segment substitution lines in Peanut (Arachis hypogaea L.) using a wild synthetic and QTL mapping for plant morphology. PLoS ONE 7:e48642. doi:10.1371/journal.pone.0048642

    Article  PubMed  CAS  Google Scholar 

  • Forster BP, Rzussell JR, Ellis RP, Handley LL, Robinson D, Hackett CA, Nevo E, Waugh R, Gordon DC, Keith R, Powell W (1997) Locating genotypes and genes for abiotic stress tolerance in barley: a strategy using maps, markers and the wild species. New Phytol 137:141–147

    Article  Google Scholar 

  • Frary A, Nesbitt TC, Frary A, Grandillo S, van der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB (2000) fw2. 2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Google Scholar 

  • Frary A, Fulton TM, Zamir D, Tanksley SD (2004) Advanced backcross QTL analysis of a Lycopersicon esculentum × L. pennellii cross and identification of possible orthologs in the Solanaceae. Theor Appl Genet 108:485–496

    Article  PubMed  CAS  Google Scholar 

  • Gavuzzi P, Rizza F, Palumbo M, Campanile R, Ricciardi G, Borghi B (1997) Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Can J Plant Sci 77:523–531

    Article  Google Scholar 

  • Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snape JW (2010) A genetic framework for grain size and shape variation in wheat. Plant Cell 22:1046–1056

    Article  PubMed  CAS  Google Scholar 

  • Grando S, Von Bothmer R, Ceccarelli S (2001) Genetic diversity of barley: use of locally adapted germplasm to enhance yield and yield stability of barley in dry areas. Broadening the Genetics Base of Crop Production, IPG/FAO:351-371

  • Harlan JR (ed) (1976) Barley Hordeum vulgare (Gramineae-Triticinae). Evolution in crop plants. Longman, London

    Google Scholar 

  • Inostroza L, del Pozo A, Matus I, Castillo D, Hayes P, Machado S, Corey A (2009) Association mapping of plant height, yield, and yield stability in recombinant chromosome substitution lines (RCSLs) using Hordeum vulgare subsp. spontaneum as a source of donor alleles in a Hordeum vulgare subsp. vulgare background. Mol Breed 23:365–376

    Article  Google Scholar 

  • Ivandic V, Thomas W, Nevo E, Zhang Z, Forster B (2003) Associations of simple sequence repeats with quantitative trait variation including biotic and abiotic stress tolerance in Hordeum spontaneum. Plant Breed 122:300–304

    Article  CAS  Google Scholar 

  • Jamieson PD, Martin RJ, Francis GS (1995) Drought Influences on grain-yield of barley, wheat, and maize. N Z J Crop Hortic Sci 23:55–66

    Article  Google Scholar 

  • Jiang Y, Guo W, Zhu H, Ruan Y-L, Zhang T (2012) Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality. Plant Biotechnol J 10:301–312

    Article  PubMed  CAS  Google Scholar 

  • Jukanti AK, Fischer AM (2008) A high-grain protein content locus on barley (Hordeum vulgare) chromosome 6 is associated with increased flag leaf proteolysis and nitrogen remobilization. Physiol Plant 132:426–439

    Article  PubMed  CAS  Google Scholar 

  • Karakousis A, Gustafson JP, Chalmers KJ, Barr AR, Langridge P (2003) A consensus map of barley integrating SSR, RFLP, and AFLP markers. Aust J Agric Res 54:1173–1185

    Article  CAS  Google Scholar 

  • Kato T (1995) Change of sucrose synthase activity in developing endosperm of rice cultivars. Crop Sci 35:827–831

    Article  CAS  Google Scholar 

  • Kovach MJ, Sweeney MT, McCouch SR (2007) New insights into the history of rice domestication. Trends Genet 23:578–587

    Article  PubMed  CAS  Google Scholar 

  • Lakew B, Eglinton J, Henry RJ, Baum M, Grando S, Ceccarelli S (2011) The potential contribution of wild barley (Hordeum vulgare ssp. spontaneum) germplasm to drought tolerance of cultivated barley (H. vulgare ssp. vulgare). Field Crops Res 120:161–168

    Article  Google Scholar 

  • Lakew B, Henry R, Ceccarelli S, Grando S, Eglinton J, Baum M (2013) Genetic analysis and phenotypic associations for drought tolerance in Hordeum spontaneum introgression lines using SSR and SNP markers. Euphytica 189:9–29

    Article  CAS  Google Scholar 

  • Li J, Huang XQ, Heinrichs F, Ganal MW, Röder MS (2005) Analysis of QTLs for yield, yield components, and malting quality in a BC3-DH population of spring barley. Theor Appl Genet 110:356–363

    Article  PubMed  CAS  Google Scholar 

  • Li JZ, Huang XQ, Heinrichs F, Ganal MW, Röder MS (2006) Analysis of QTLs for yield components, agronomic traits, and disease resistance in an advanced backcross population of spring barley. Genome 49:454–466

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J (2011) Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 43:1266–1269

    Article  PubMed  CAS  Google Scholar 

  • MacLeod L, Duffus C (1988) Reduced starch content and sucrose synthase activity in developing endosperm of barley plants grown at elevated temperatures. Funct Plant Biol 15:367–375

    CAS  Google Scholar 

  • Merah O, Deléens E, Souyris I, Monneveux P (2001) Ash content might predict carbon isotope discrimination and grain yield in durum wheat. New Phytol 149:275–282

    Article  Google Scholar 

  • Mir R, Zaman-Allah M, Sreenivasulu N, Trethowan R, Varshney R (2012) Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125:625–645

    Article  PubMed  CAS  Google Scholar 

  • Morgan AG, Riggs TJ (1981) Effects of drought on yield and on grain and malt characters in spring barley. J Sci Food Agric 32:339–346

    Article  CAS  Google Scholar 

  • Munier-Jolain N, Salon C (2005) Are the carbon costs of seed production related to the quantitative and qualitative performance? An appraisal for legumes and other crops. Plant, Cell Environ 28:1388–1395

    Article  Google Scholar 

  • Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245

    Article  CAS  Google Scholar 

  • Nevo E (ed) (1992) Origin, evolution, population genetics and resources for breeding of wild barley, Hordeum spontaneum in the Fertile Crescent. Barley: genetics, biochemistry, molecular biology and biotechnology. CAB International, The Alden Press, Oxford

  • Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant, Cell Environ 33:670–685

    Article  CAS  Google Scholar 

  • Nicholas NE, Turner NC (1992) Use of chemical desiccants and senescing agents to select wheat lines maintaining stable grain size during post-anthesis drought. Field Crops Res 31:155–171

    Article  Google Scholar 

  • Ober ES, Setter TL, Madison JT, Thompson JF, Shapiro PS (1991) Influence of water deficit on maize endosperm development: enzyme activities and RNA transcripts of starch and zein synthesis, abscisic acid, and cell division. Plant Physiol 97:154–164

    Article  PubMed  CAS  Google Scholar 

  • Peleg Z, Fahima T, Korol AB, Abbo S, Saranga Y (2011) Genetic analysis of wheat domestication and evolution under domestication. J Exp Bot 62:5051–5061

    Article  PubMed  CAS  Google Scholar 

  • Pillen K, Zacharias A, Léon J (2003) Advanced backcross QTL analysis in barley (Hordeum vulgare L.). Theor Appl Genet 107:340–352

    Article  PubMed  CAS  Google Scholar 

  • Pillen K, Zacharias A, Léon J (2004) Comparative AB-QTL analysis in barley using a single exotic donor of Hordeum vulgare ssp. spontaneum. Theor Appl Genet 108:1591–1601

    Article  PubMed  CAS  Google Scholar 

  • Quarrie S, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusić D, Waterman E, Weyen J (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  PubMed  CAS  Google Scholar 

  • Regina A, Kosar-Hashemi B, Ling S, Li Z, Rahman S, Morell M (2010) Control of starch branching in barley defined through differential RNAi suppression of starch branching enzyme IIa and IIb. J Exp Bot 61:1469–1482

    Article  PubMed  CAS  Google Scholar 

  • Röder MS, Huang XQ, Börner A (2008) Fine mapping of the region on wheat chromosome 7D controlling grain weight. Funct Integr Genomic 8:79–86

    Article  Google Scholar 

  • Rolletschek H, Borisjuk L, Radchuk R, Miranda M, Heim U, Wobus U, Weber H (2004) Seed specific expression of a bacterial phosphoenolpyruvate carboxylase in Vicia narbonensis increases protein content and improves carbon economy. Plant Biotechnol J 2:211–219

    Article  PubMed  CAS  Google Scholar 

  • Rostoks N, Mudie S, Cardle L, Russell J, Ramsay L, Booth A, Svensson JT, Wanamaker SI, Walia H, Rodriguez EM (2005) Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol Genet Genomics 274:515–527

    Article  PubMed  CAS  Google Scholar 

  • Sawhney V, Singh D (2002) Effect of chemical desiccation at the post-anthesis stage on some physiological and biochemical changes in the flag leaf of contrasting wheat genotypes. Field Crops Res 77:1–6

    Article  Google Scholar 

  • Schmalenbach I, Körber N, Pillen K (2008) Selecting a set of wild barley introgression lines and verification of QTL effects for resistance to powdery mildew and leaf rust. Theor Appl Genet 117:1093–1106

    Article  PubMed  Google Scholar 

  • Schmalenbach I, Léon J, Pillen K (2009) Identification and verification of QTLs for agronomic traits using wild barley introgression lines. Theor Appl Genet 118:483–497

    Article  PubMed  CAS  Google Scholar 

  • Schmalenbach I, March TJ, Bringezu T, Waugh R, Pillen K (2011) High-resolution genotyping of wild barley introgression lines and fine-mapping of the threshability locus thresh-1 using the Illumina GoldenGate assay. G3 Genes Genomes Genet 1:187–196

    CAS  Google Scholar 

  • Schnaithmann F, Pillen K (2013) Detection of exotic QTLs controlling nitrogen stress tolerance among wild barley introgression lines. Euphytica 189:1–22

    Google Scholar 

  • See D, Kanazin V, Kephart K, Blake T (2002) Mapping genes controlling variation in barley grain protein concentration. Crop Sci 42:680–685

    Article  CAS  Google Scholar 

  • Sheoran I, Saini H (1996) Drought-induced male sterility in rice: changes in carbohydrate levels and enzyme activities associated with the inhibition of starch accumulation in pollen. Sex Plant Reprod 9:161–169

    Article  Google Scholar 

  • Sinclair TR (2011) Challenges in breeding for yield increase for drought. Trends Plant Sci 16:289–293

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Loboda T, Sung S-JS, Black CC (1992) Sucrose synthase in wild tomato, lycopersicon chmielewskii, and tomato fruit sink strength. Plant Physiol 98:1163–1169

    Article  PubMed  CAS  Google Scholar 

  • Suprunova T, Krugman T, Distelfeld A, Fahima T, Nevo E, Korol A (2007) Identification of a novel gene (Hsdr4) involved in water-stress tolerance in wild barley. Plant Mol Biol 64:17–34

    Article  PubMed  CAS  Google Scholar 

  • Swamy BPM, Sarla N (2008) Yield-enhancing quantitative trait loci (QTLs) from wild species. Biotechnol Adv 26:106–120

    Article  PubMed  CAS  Google Scholar 

  • Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K (2009) Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182:1323–1334

    Google Scholar 

  • Talame V, Sanguineti M, Chiapparino E, Bahri H, Salem M, Forster B, Ellis R, Rhouma S, Zoumarou W, Waugh R, Tuberosa R (2004) Identification of Hordeum spontaneum QTL alleles improving field performance of barley grown under rainfed conditions. Ann Appl Biol 144:309–319

    Article  CAS  Google Scholar 

  • Tanksley S, Grandillo S, Fulton T, Zamir D, Eshed Y, Petiard V, Lopez J, Beck-Bunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor Appl Genet 92:213–224

    Article  PubMed  CAS  Google Scholar 

  • Tanksley S, Nelson J (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Teulat B, Merah O, Souyris I, This D (2001) QTLs for agronomic traits from a Mediterranean barley progeny grown in several environments. Theor Appl Genet 103:774–787

    Article  CAS  Google Scholar 

  • Teulat B, Merah O, Sirault X, Borries C, Waugh R, This D (2002) QTLs for grain carbon isotope discrimination in field-grown barley. Theor Appl Genet 106:118–126

    PubMed  CAS  Google Scholar 

  • Thomson MJ, Tai TH, McClung AM, Hinga ME, Lobos KB, Xu Y, Martinez C, McCouch SR (2003) Mapping quantitative trait loci for yield, yield components, and morphological traits in an advanced backcross population between Oryza rufipogon and the Oryza sativa cultivar Jefferson. Theor Appl Genet 107:479–493

    Article  PubMed  CAS  Google Scholar 

  • Triboi E, Triboi-Blondel AM (2001) Environmental effects on wheat grain growth and composition. Aspects Appl Biol 64:91–101

    Google Scholar 

  • Tuberosa R, Salvi S (2006) Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11:405–412

    Article  PubMed  CAS  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  PubMed  CAS  Google Scholar 

  • Van der Knaap E, Tanksley S (2001) Identification and characterization of a novel locus controlling early fruit development in tomato. Theor Appl Genet 103:353–358

    Article  Google Scholar 

  • Varshney RK, Marcel TC, Ramsay L, Russell J, Röder MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 114:1091–1103

    Article  PubMed  CAS  Google Scholar 

  • Volis S, Mendlinger S, Orlovsky N (2000) Variability in phenotypic traits in core and peripheral populations of wild barley Hordeum spontaneum Koch. Hereditas 133:235–247

    Article  PubMed  CAS  Google Scholar 

  • Voltas J, Romagosa I, Muñoz P, Araus J (1998) Mineral accumulation, carbon isotope discrimination and indirect selection for grain yield in two-rowed barley grown under semiarid conditions. Eur J Agron 9:147–155

    Article  Google Scholar 

  • von Korff M, Wang H, Léon J, Pillen K (2006) AB-QTL analysis in spring barley: II. Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H. vulgare ssp. spontaneum). Theor Appl Genet 112:1221–1231

    Article  Google Scholar 

  • von Korff M, Wang H, Léon J, Pillen K (2008) AB-QTL analysis in spring barley: III. Identification of exotic alleles for the improvement of malting quality in spring barley (H. vulgare ssp. spontaneum). Mol Breed 21:81–93

    Article  Google Scholar 

  • Wang B, Chee PW (2010) Application of advanced backcross quantitative trait locus (QTL) analysis in crop improvement. J Plant Breed Crop Sci 2:221–232

    CAS  Google Scholar 

  • Wang F, Sanz A, Brenner ML, Smith A (1993) Sucrose synthase, starch accumulation, and tomato fruit sink strength. Plant Physiol 101:321–327

    PubMed  CAS  Google Scholar 

  • Wei C, Qin F, Zhu L, Zhou W, Chen Y, Wang Y, Gu M, Liu Q (2009) Microstructure and ultrastructure of high-amylose rice resistant starch granules modified by antisense RNA inhibition of starch branching enzyme. J Agric Food Chem 58:1224–1232

    Article  Google Scholar 

  • Weichert N, Saalbach I, Weichert H, Kohl S, Erban A, Kopka J, Hause B, Varshney A, Sreenivasulu N, Strickert M (2010) Increasing sucrose uptake capacity of wheat grains stimulates storage protein synthesis. Plant Physiol 152:698–710

    Article  PubMed  CAS  Google Scholar 

  • Worch S, Rajesh K, Harshavardhan V, Pietsch C, Korzun V, Kuntze L, Börner A, Wobus U, Röder MS, Sreenivasulu N (2011) Haplotyping, linkage mapping and expression analysis of barley genes regulated by terminal drought stress influencing seed quality. BMC Plant Biol 11:1

    Article  PubMed  CAS  Google Scholar 

  • Xiao J, Li J, Grandillo S, Ahn SN, Yuan L, Tanksley SD, McCouch SR (1998) Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics 150:899–909

    PubMed  CAS  Google Scholar 

  • Xu J, Lafitte H, Gao Y, Fu B, Torres R, Li Z (2005) QTLs for drought escape and tolerance identified in a set of random introgression lines of rice. Theor Appl Genet 111:1642–1650

    Article  PubMed  CAS  Google Scholar 

  • Yamakawa H, Hirose T, Kuroda M, Yamaguchi T (2007) Comprehensive expression profiling of rice grain filling-related genes under high temperature using DNA microarray. Plant Physiol 144:258–277

    Article  PubMed  CAS  Google Scholar 

  • Yang SJ, Vanderbeld B, Wan JX, Huang YF (2010) Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Mol Plant 3:469–490

    Article  PubMed  CAS  Google Scholar 

  • Yano M (2001) Genetic and molecular dissection of naturally occurring variation. Curr Opin Plant Biol 4:130–135

    Article  PubMed  CAS  Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989

    PubMed  CAS  Google Scholar 

  • Zhu H, Gilchrist L, Hayes P, Kleinhofs A, Kudrna D, Liu Z, Prom L, Steffenson B, Toojinda T, Vivar H (1999) Does function follow form? Principal QTLs for Fusarium head blight (FHB) resistance are coincident with QTLs for inflorescence traits and plant height in a doubled-haploid population of barley. Theor Appl Genet 99:1221–1232

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by a grant from the German Ministry of Education and Research (BMBF) (Project GABI-GRAIN; FKZ: 0315041A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion S. Röder.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 693 kb)

Supplementary material 2 (TXT 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalladan, R., Worch, S., Rolletschek, H. et al. Identification of quantitative trait loci contributing to yield and seed quality parameters under terminal drought in barley advanced backcross lines. Mol Breeding 32, 71–90 (2013). https://doi.org/10.1007/s11032-013-9853-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-013-9853-9

Keywords

Navigation