QTL mapping of resistance to race Ug99 of Puccinia graminis f. sp. tritici in durum wheat (Triticum durum Desf.)

Abstract

Stem rust caused by Puccinia graminis f. sp. tritici was historically one of the most destructive diseases of wheat worldwide. The evolution and rapid migration of race TTKSK (Ug99) and derivatives, first detected in Uganda in 1999, are of international concern due to the virulence of these races to widely used stem rust resistance genes. In attempts to identify quantitative trait loci (QTL) linked with resistance to stem rust race Ug99, 95 recombinant inbred lines that were developed from a cross between two durum wheat varieties, Kristal and Sebatel, were evaluated for reaction to stem rust. Seven field trials at two locations were carried out in main and off seasons. In addition to the natural infection, the nursery was also artificially inoculated with urediniospores of stem rust race Ug99 and a mixture of locally collected stem rust urediniospores. A genetic map was constructed based on 207 simple sequence repeat (SSR) and two sequence tagged site loci. Using composite interval mapping, nine QTL for resistance to stem rust were identified on chromosomes 1AL, 2AS, 3BS, 4BL, 5BL, 6AL 7A, 7AL and 7BL. These results suggest that durum wheat resistance to stem rust is oligogenic and that there is potential to identify previously uncharacterized resistance genes with minor effects. The SSR markers that are closely linked to the QTL can be used for marker-assisted selection for stem rust resistance in durum wheat.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

ANOVA:

Analysis of variance

APR:

Adult plant resistance

BARC:

Beltsville Agriculture Research Center

BLUP:

Best linear unbiased prediction

CIM:

Composite interval mapping

cM:

Centimorgan

DN:

Denbi

DZ:

Debre Zeit

GS:

Growth stage

GWM:

Gatersleben wheat microsatellite

IM:

Interval mapping

LOD:

Likelihood of odds ratio

MAS:

Marker-assisted selection

MS:

Main season

OS:

Off season

PCR:

Polymerase chain reaction

Pgt :

Puccinia graminis f. sp. tritici

QTL:

Quantitative trait loci or Quantitative trait locus

RFLP:

Restriction fragment length polymorphism

RIL:

Recombinant inbred line

SR:

Stem rust severity

SSD:

Single seed descent

SSR:

Simple sequence repeat

STS:

Sequence tagged site

WMC:

Wheat Microsatellite Consortium

References

  1. Admassu B, Lind V, Friedt W (2009) Virulence analysis of Puccinia graminis f.sp tritici populations in Ethiopia with special consideration of Ug99. Plant Pathol 58:362–369

    Article  Google Scholar 

  2. Admassu B, Perovic D, Friedt W, Ordon F (2011) Genetic mapping of the stem rust (Puccinia graminis f. sp.tritici Eriks. & E. Henn) resistance gene Sr13 in wheat (Triticum aestivum L.). Theor Appl Genet 122:643–648

    PubMed  Article  CAS  Google Scholar 

  3. Asins MJ (2002) Review: Present and future of quantitative trait loci analysis in plant breeding. Plant Breed 121:281–291

    Article  Google Scholar 

  4. Babiker E, Ibrahim A, Yen Y, Stein J (2009) Identification of a microsatellite marker associated with stem rust resistance gene Sr35 in Wheat. Aust J Crop Sci 3:195–200

    CAS  Google Scholar 

  5. Badakhshan H, Mohammadi SA, Zad SA, Moghaddam M, Kamali MRJ, Khodarahmi M (2008) Quantitative trait loci in bread wheat (Triticum aestivum L.) associated with resistance to stripe rust. Biotechnol Biotechnol Equip 22:901–906

    CAS  Google Scholar 

  6. Bansal UK, Bossolini E, Miah H, Keller B, Park RF, Bariana HS (2008) Genetic mapping of seedling and adult plant stem rust resistance in two European winter wheat cultivars. Euphytica 164:821–828

    Article  Google Scholar 

  7. Bariana HS (2008) Stem rust resistance in wheat—the Australian experience. In: Singh GP, Prabhu KV, Singh AM (eds) Proceeding of international conference on wheat stem rust Ug99—a threat to food security, Indian Agricultural Research Institute, New Delhi, India, p 85

  8. Bariana HS, Miah H, Brown GN, Willey N, Lehmensiek A (2007) Molecular mapping of durable rust resistance in wheat and its implication in breeding. In: Buck HT, Nisi JE, Salomón N (eds) Wheat production in stressed environments. Springer, Dordrecht, pp 723–728

    Chapter  Google Scholar 

  9. Chu CG, Friesen TL, Xu SS, Faris JD, Kolmer JA (2009) Identification of novel QTLs for seedling and adult leaf rust resistance in wheat doubled haploid population. Theor Appl Genet 119:263–269

    PubMed  Article  Google Scholar 

  10. Das BK, Saini A, Bhagwat SG, Jawali N (2006) Development of SCAR markers for identification of stem rust resistance gene Sr31 in the homozygous or heterozygous condition in bread wheat. Plant Breed 125:544–549

    Article  CAS  Google Scholar 

  11. Doyle JJ, Doyle JL (1990) A rapid total DNA preparation procedure for fresh plant tissue. Focus 12:13–15

    Google Scholar 

  12. Federer WT (1956) Augmented (or hoonuiaku) designs. Hawaiian Plant Rec 55:191–208

    Google Scholar 

  13. Ganal MW, Röder MS (2007) Microsatellite and SNP markers in wheat breeding. In: Varshney RK, Tuberosa R (eds) Genomics assisted crop improvement: vol. 2: genomics applications in crops. Springer, New York, pp 1–24

    Chapter  Google Scholar 

  14. Hiebert CW, Fetch TG Jr, Zegeye T (2010) Genetics and mapping of stem rust resistance to Ug99 in the wheat cultivar Webster. Theor Appl Genet 121:65–69

    PubMed  Article  Google Scholar 

  15. Hiebert CW, Fetch TG, Zegeye T, Thomas JB, Somers DJ, Humphreys DG, McCallum BD, Cloutier S, Singh D, Knott DR (2011) Genetics and mapping of seedling resistance to Ug99 stem rust in Canadian wheat cultivars ‘Peace’ and ‘AC Cadillac’. Theor Appl Genet 122:143–149

    PubMed  Article  Google Scholar 

  16. Huang XQ, Röder MS (2004) Molecular mapping of powdery mildew resistance genes in wheat: a review. Euphytica 137:203–223

    Article  CAS  Google Scholar 

  17. Jin Y, Singh RP, Ward RW, Wanyera R, Kinyua MG, Njau P, Fetch T Jr, Pretorius ZA, Yahyaoui A (2007) Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici. Plant Dis 91:1096–1099

    Article  Google Scholar 

  18. Jin Y, Szabo LJ, Pretorius ZA, Singh RP, Ward R, Fetch T Jr (2008) Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici. Plant Dis 92:923–926

    Article  Google Scholar 

  19. Jin Y, Szabo LJ, Rouse MN, Fetch T Jr, Pretorius ZA, Wanyera R, Njau P (2009) Detection of virulence to resistance gene Sr36 within the TTKS race lineage of Puccinia graminis f. sp. tritici. Plant Dis 93:367–370

    Article  CAS  Google Scholar 

  20. Kaur J, Bansal UK, Khana R, Saini RG, Bariana HS (2009) Molecular mapping of stem rust resistance in HD2009/WL711 recombinant inbred line population. Int J Plant Breed 3:28–33

    Google Scholar 

  21. Khan R, Bariana H, Dholakia B, Naik S, Lagu M, Rathjen A, Bhavani S, Gupta V (2005) Molecular mapping of stem and leaf rust resistance in wheat. Theor Appl Genet 111:846–850

    PubMed  Article  CAS  Google Scholar 

  22. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  23. Lagudah ES (2010) Molecular genetics of race non-specific rust resistance in wheat. Oral presentations. In: Borlaug Global Rust Initiative 2010 Technical Workshop, 30–31-May 2010, St Petersburg, Russia. http://www.globalrust.org/db/attachments/about/19/1/BGRI%20oral%20papers%202010.pdf

  24. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    PubMed  Article  CAS  Google Scholar 

  25. Li Z, Pinson SR, Park IW, Paterson AH, Stanselt JW (1997) Epistasis for three grain yield components in rice (Oryza sativa L.). Genetics 145:453–465

    PubMed  CAS  Google Scholar 

  26. Maccaferri M, Sanguineti MC, Corneti S, Ortega JL, Salem MB, Bort J, DeAmbrogio E, Moral LF, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Martos V, Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou H, Royo C, Slama A, Tuberosa R (2008) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178:489–511

    PubMed  Article  Google Scholar 

  27. Maccaferri M, Sanguineti MC, Mantovani P, Demontis A, Massi A, Ammar K, Kolmer JA, Czembor JH, Ezrati S, Tuberosa R (2010a) Association mapping of leaf rust response in durum wheat. Mol Breed 26:189–228

    Article  CAS  Google Scholar 

  28. Maccaferri M, Letta DT, Badebo A, Ammar K, Sanguineti MC, Crossa J, Bovina R, Tuberosa1 R (2010b) Mapping stem rust resistance in durum wheat. In: Proceedings of the 54th Italian society of agricultural genetics annual congress, September 27-30, 2010, Matera, Italy

  29. Mago R, Brown-Guedira G, Dreisigacker S, Breen J, Jin Y, Singh R, Appels R, Lagudah ES, Ellis J, Spielmeyer W (2011) An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theor Appl Genet 122:735–744

    PubMed  Article  CAS  Google Scholar 

  30. McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. CSIRO, Canberra

    Google Scholar 

  31. McIntosh RA, Yamazaki Y, Dubcovsky J, Rogers WJ, Morris CF, Somers D, Appels R, Devos KM (2008) Catalogue of gene symbols for wheat. Gene Symbols. In: McIntosh RA (ed). http://wheat.pw.usda.gov/GG2/Triticum/wgc/GeneSymbol.pdf

  32. McNeil MD, Kota R, Paux E, Dunn D, McLean R, Feuillet C, Li D, Kong X, Lagudah E, Zhang JC, Jia JZ, Spielmeyer W, Bellgard M, Appels R (2008) BAC-derived markers for assaying the stem rust resistance gene, Sr2, in wheat breeding program. Mol Breed 22:15–24

    Article  CAS  Google Scholar 

  33. Nachit MM, Eloua WI, Pagnotta MA, El Saleh A, Iacono E, Labhili M, Asbati A, Azrak M, Hazzam H, Benscher D, Khairallah M, Ribaut J-M, Tanzarella OA, Porceddu E, Sorrells ME (2001) Molecular linkage map for an intraspecic recombinant inbred population of durum wheat (Triticum turgidum L. var. durum). Theor Appl Genet 102:177–186

    Article  CAS  Google Scholar 

  34. Nazari K, Mafi M, Yahyaoui A, Singh RP, Park RF (2009) Detection of wheat stem rust (Puccinia graminis f. sp tritici) race TTKSK (Ug99) in Iran. Plant Dis 93:317

    Article  Google Scholar 

  35. Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245

    Article  CAS  Google Scholar 

  36. Nyquist WE (1991) Estimation of heritability and prediction of selection response in plant populations. Crit Rev Plant Sci 10:235–322

    Article  Google Scholar 

  37. Olivera PD, Jin Y, Badebo A, Singh D (2010) Races of Puccinia graminis f. sp. tritici with virulence on Sr13 and Sr9e in durum screening nursery in Ethiopia. In: Borlaug Global Rust Initiative 2010 Technical Workshop Poster Abstracts, May 30–31, 2010, St Petersburg, Russia. http://globalrust.org/db/attachments/bgriiwc/2/1/Posters%20abstracts_5-19-10%20FINAL.pdf

  38. Olivera PD, Rouse M, Badebo A, Abeyo B, Woldeab G, Wanyera W, Jin Y (2011) Races of Puccinia graminis f. sp. tritici in Ethiopia and Kenya. In: McIntosh RA (ed) Proceedings of the Borlaug global rust initiative 2011 technical workshop, June 13–16, Saint Paul, Minnesota, USA, p 157

  39. Olson EL, Brown-Guedira G, Marshall D, Stack E, Bowden RL, Jin Y, Rouse M, Pumphrey MO (2010) Development of wheat lines having a small introgressed segment carrying stem rust resistance gene Sr22. Crop Sci 50:1823–1830

    Article  CAS  Google Scholar 

  40. Paterson A, Tanksley S, Sorrels ME (1991) DNA markers in plant improvement. Adv Agron 44:39–90

    Article  Google Scholar 

  41. Payne RW, Harding SA, Murray DA, Soutar DM, Baird DB, Glaser AI, Channing IC, Welham SJ, Gilmour AR, Thompson R, Webster R (2009) GenStat release 12 reference manual. VSN International, Hertfordshire HP1 1ES, UK

  42. Peleg Z, Saranga Y, Suprunova T, Ronin Y, Röder MS, Kilian A, Korol AB, Fahima T (2008) High-density genetic map of durum wheat × wild emmer wheat based on SSR and DArT markers. Theor Appl Genet 117:103–115

    PubMed  Article  CAS  Google Scholar 

  43. Periyannan SK, Bansal UK, Bariana HS, Pumphrey M, Lagudah ES (2011) A robust molecular marker for the detection of shortened introgressed segment carrying the stem rust resistance gene Sr22 in common wheat. Theor Appl Genet 22:1–7

    Article  Google Scholar 

  44. Peterson RG (1985) Augmented designs for preliminary yield trials (revised). Rachis 4:27–32

    Google Scholar 

  45. Peterson RF, Champbell AB, Hannah AE (1948) A diagrammatic scale for estimating rust intensity of leaves and stem of cereals. Can J Res (C) 26:496–500

    Article  Google Scholar 

  46. Piepho HP, Möhring J, Melchinger AE, Büchse A (2008) BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161:209–228

    Article  Google Scholar 

  47. Pozniak CJ, Reimer S, Fetch T, Clarke JM, Clarke FR, Somers D, Knox RE, Singh AK (2008) Association mapping of Ug99 resistance in diverse durum wheat population. In: Rudi A, Russell E, Peter L, Michael M, Lynne M, Peter S (eds) Proceedings of the 11th international wheat genetics symposium 24–29 August 2008, Brisbane, QLD, Australia, pp 809–811

  48. Pretorius ZA, Singh RP, Wagoire WW, Payne TS (2000) Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Phytopathology 84:203

    Google Scholar 

  49. Pretorius ZA, Bender CM, Visser B, Terefe T (2010) First report of a Puccinia graminis f. sp. tritici race virulent to the Sr24 and Sr31 wheat stem rust resistance genes in South Africa. Plant Dis 94:784

    Article  Google Scholar 

  50. Prins R, Pretorius ZA, Bender CM, Lehmensiek A (2011) QTL mapping of stripe, leaf and stem rust resistance genes in a Kariega 3 × Avocet S doubled haploid wheat population. Mol Breed 27:259–270

    Article  Google Scholar 

  51. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  52. Roelfs AP, Singh RP, Saari EE (1992) Rust diseases of wheat: concepts and methods of diseases management. CIMMYT, Mexico City

    Google Scholar 

  53. Rouse MN, Chao S, Anderson JA, Jin Y (2010) Mapping of two linked TTKSK stem rust resistance genes on chromosome arm 2BL in hexaploid wheat In: Borlaug global rust initiative 2010 technical workshop poster abstracts, May 30–31, 2010, St Petersburg, Russia. http://globalrust.org/db/attachments/bgriiwc/2/1/Posters%20abstracts_5-19-10%20FINAL.pdf

  54. Saari EE, Prescott JM (1985) World distribution in relation to economic losses. In: Roelfs AP, Bushnell WR (eds) The cereal rusts, vol 2. Academic Press, Orlando, pp 3–37

    Google Scholar 

  55. SigmaPlot 11 (2008) SigmaPlot 11.0 user’s guide. San Jose, CA 95110-1386. Systat Software, Inc., USA

  56. Simons K, Abate Z, Chao S, Zhang W, Rouse M, Jin Y, Elias E, Dubcovsky J (2011) Genetic mapping of stem rust resistance gene Sr13 in tetraploid wheat (Triticum turgidum ssp. Durum L.). Theor Appl Genet 122:649–658

    PubMed  Article  Google Scholar 

  57. Singh RP (1991) Pathogenicity variation of Puccinia recondita f. sp. tritici and P. graminis f. sp. tritici in wheat-growing areas of Mexico during 1988 and 1989. Plant Dis 75:790–794

    Article  Google Scholar 

  58. Singh RP, Hodson DP, Jin Y, Huerta-Espino J, Kinyua MG, Wanyera R, Njau P, Ward RW (2006) Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. Perspect Agric Vet Sci Nutr Nat Resour 1:1–13

    CAS  Google Scholar 

  59. Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Njau P, Wanyera R, Ward WR (2008a) Will stem rust destroy the world’s wheat crop? Adv Agron 98:271–309

    Article  CAS  Google Scholar 

  60. Singh RP, Hodon DP, Huerta-Espino J, Jin Y, Wanyera PN, Herrera-Foessel SA, Bhavani S, Singh D, Singh PK (2008b) Global status of Ug99 spread and efforts to mitigate the threat. In: Singh GP, Prabhu KV, Singh AM (eds) Proceedings of international conference on wheat stem rust Ug99—a threat to food security. Indian Agricultural Research Institute, New Delhi, India, p 85

  61. Singh RP, Huerta-Espino J, Bhavani S, Herrera-Foessel SA, Singh D, Singh PK, Velu G, Mason RE, Jin Y, Njau P, Crossa J (2010) Race non-specific resistance to rusts in CIMMYT spring wheats: Breeding advances, Oral presentations. In: Borlaug Global Rust Initiative 2010 technical workshop, 30–31 May 2010, St Petersburg, Russia. http://www.globalrust.org/db/attachments/about/19/27/20%2dSingh%20BGRI%20Workshop%5fRussia%2031%20May2010%5ffinal%20version.pdf

  62. Singh RP, Huerta-Espino J, Bhavani S, Herrera-Foessel SA, Singh D, Singh PK, Velu G, Mason RE, Jin Y, Njau P, Crossa J (2011) Race non-specific resistance to rust diseases in CIMMYT spring wheats. Euphytica 179:175–186

    Article  Google Scholar 

  63. Somers DJ, Issac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    PubMed  Article  CAS  Google Scholar 

  64. Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    PubMed  Article  CAS  Google Scholar 

  65. Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25

    PubMed  Article  CAS  Google Scholar 

  66. Spielmeyer W, Sharp PJ, Lagudah ES (2003) Identification and validation of markers linked to broad-spectrum stem rust resistance gene Sr2 in wheat (Triticum aestivum L.). Crop Sci 43:333–336

    Article  CAS  Google Scholar 

  67. Visser B, Herselman L, Park RF, Karaoglu H, Bender CM, Pretorius ZA (2011) Characterization of two new Puccinia graminis f. sp. tritici races within the Ug99 lineage in South Africa. Euphytica 179:119–127

    Article  Google Scholar 

  68. Wang S, Basten CJ, Zeng ZB (2005) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.html

  69. Wang RX, Hai L, Zhang XY, You GX, Yan CS, Xiao SH (2009) QTL mapping for grain filling rate and yield-related traits in RILs of the Chinese winter wheat population Heshangmai × Yu8679. Theor Appl Genet 118:313–325

    PubMed  Article  CAS  Google Scholar 

  70. Waynera R (2008) Status and impact of TTKS (UG99) in Kenya. In: Singh GP, Prabhu KV, Singh AM (eds) Proceedings of international conference on wheat stem rust. Ug99—a threat to food security. Indian Agricultural Research Institute, New Delhi, India, p 85

  71. Wu S, Pumphrey M, Bai G (2009) Molecular mapping of stem-rust resistance gene Sr40 in wheat. Crop Sci 49:1681–1686

    Article  CAS  Google Scholar 

  72. Xing YZ, Tan YF, Hua JP, Sun XL, Xu CG, Zhang QF (2002) Characterization of the main effects, epistatic effects and their environmental interactions of QTLs on the genetic basis of yield traits in rice. Theor Appl Genet 105:248–257

    PubMed  Article  CAS  Google Scholar 

  73. Yang J, Hu C, Ye X, Zhihongzhu, Zhu Z, Zhu J (2007) QTLNetwork-2.1, software for mapping QTL with epistatic and QE interaction effects. Zhejiang University, China

  74. Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang QF, Maroof MAS (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94:9226–9231

    PubMed  Article  CAS  Google Scholar 

  75. Yu LX, Liu S, Anderson JA, Singh RP, Jin Y, Dubcovsky J, Guidera GB, Bhavani S, Morgounov A, He Z, Huerta-Espino J, Sorrells ME (2010) Haplotype diversity of stem rust resistance loci in uncharacterized wheat lines. Mol Breed 26:667–680

    Article  Google Scholar 

  76. Zeng ZB (2005) QTL mapping and the genetic basis of adaptation: recent developments. Genetica 123:25–37

    PubMed  Article  CAS  Google Scholar 

  77. Zhang K, Tian J, Zhao L, Liu B, Chen G (2009) Detection of quantitative trait loci for heading date based on the doubled haploid progeny of two elite Chinese wheat cultivars. Genetica 135:257–265

    PubMed  Article  Google Scholar 

  78. Zhang W, Olson E, Saintenac C, Rouse M, Abate Z, Jin Y, Akhunov E, Pumphrey M, Dubcovsky J (2010) Genetic maps of stem rust resistance gene Sr35 in diploid and hexaploid wheat. Crop Sci 50:2464–2474

    Article  CAS  Google Scholar 

  79. Zwart RS, Shah N, Bansal UK, Sivasamy M, Singh D, Miah H, Raman H, Martin P, Gupta VS, Bariana HS (2010) QTL mapping of stem rust resistance in wheat. In: Borlaug Global Rust Initiative 2010 Technical Workshop Poster Abstracts, May 30–31, 2010, St Petersburg, Russia. http://globalrust.org/db/attachments/bgriiwc/2/1/Posters%20abstracts_5-19-10%20FINAL.pdf

Download references

Acknowledgments

The authors are thankful to Debre Zeit Agricultural Research Centre, Ethiopia, for maintaining experimental plots and financial support for the field work. Field and technical assistances rendered by Bethelhem Hibdo and Chuchu Kebede during the field work and help in data analysis by Dr. Sonja Kollers are gratefully acknowledged. The authors are also thankful for the assistance provided by technical staff of the gene and genome mapping unit of the Cytogenetics and Genome Analysis Department at IPK Gatersleben. We pay attribute to the German Academic Exchange Service (DAAD) and Ethiopian Institute of Agricultural Research (EIAR) for awarding a PhD scholarship and giving leave of absence, respectively, to Jemanesh Kifetew Haile.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marion S. Röder.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 799 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haile, J.K., Nachit, M.M., Hammer, K. et al. QTL mapping of resistance to race Ug99 of Puccinia graminis f. sp. tritici in durum wheat (Triticum durum Desf.). Mol Breeding 30, 1479–1493 (2012). https://doi.org/10.1007/s11032-012-9734-7

Download citation

Keywords

  • Diagnostic marker
  • Durum wheat
  • QTL mapping
  • Stem rust
  • Ug99