Advertisement

Molecular Breeding

, Volume 28, Issue 1, pp 73–89 | Cite as

Single nucleotide polymorphism genotyping by heteroduplex analysis in sunflower (Helianthus annuus L.)

  • Corina M. Fusari
  • Verónica V. Lia
  • Verónica Nishinakamasu
  • Jeremías E. Zubrzycki
  • Andrea F. Puebla
  • Alberto E. Maligne
  • H. Esteban Hopp
  • Ruth A. Heinz
  • Norma B. Paniego
Article

Abstract

Single nucleotide polymorphisms (SNPs) and insertions/deletions (indels) are increasingly used for cultivar identification, construction of genetic maps, genetic diversity assessment, association mapping and marker-assisted breeding. Although there are several highly sensitive methods for the detection of polymorphisms, most of them are often beyond the budget of medium-throughput academic laboratories or seed companies. Heteroduplex analysis by enzymatic cleavage (CEL1CH) or denaturing high-performance liquid chromatography (dHPLC) has been successfully used to examine genetic variation in several plant and animal species. In this work, we assess and compare the performance of both methods in sunflower by genotyping SNPs from a set of 24 selected polymorphic candidate genes. The CEL1CH method allowed us to accurately detect allele differences in 10 out of 24 regions using an in-house prepared CEL1 enzyme (celery single strand endonuclease 1, Apium graveolens L.). Similarly, a total of 11 regions were successfully optimized for dHPLC analysis. As a scaling-up approach, both strategies were tested to genotype either 42 SNPs/indels in 22 sunflower accessions from the local germplasm bank or 33 SNPs/indels in 90 recombinant inbred lines (RILs) for genetic mapping purposes. Summarizing, a total of 601 genotypes were efficiently analyzed either with CEL1CH (110) or dHPCL (491). In conclusion, CEL1CH and dHPLC proved to be robust, complementary methods, allowing medium-scale laboratories to scale up the number of both SNPs and individuals to be included in genetic studies and targeted germplasm diversity characterization (EcoTILLING).

Keywords

Sunflower SNPs Heteroduplex analysis CEL1 dHPLC High-throughput genotyping 

Notes

Acknowledgments

This research was supported by ANPCyT/FONCYT, PID 2007 00073, INTA-PRR AEBIO 245001 and 245005, INTA-PE AEBIO 24554711 and 241351. The authors thank the Germplasm Bank from Estación Experimental Agropecuaria INTA Manfredi for kindly providing sunflower inbred lines seeds. C.M.F. is a Ph.D. student supported by a fellowship from Instituto Nacional de Tecnología Agropecuaria (INTA). Drs. V.V.L., R.A.H. and N.B.P. are career members of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Dr. H.E.H. is a career member of the Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC) and Professor at the Facultad de Ciencias Exactas y Naturales, University of Buenos Aires (UBA).

Supplementary material

11032_2010_9462_MOESM1_ESM.pdf (126 kb)
(PDF 126 kb)
11032_2010_9462_MOESM2_ESM.pdf (53 kb)
(PDF 53 kb)
11032_2010_9462_MOESM3_ESM.pdf (3.2 mb)
(PDF 3326 kb)
11032_2010_9462_MOESM4_ESM.pdf (1.3 mb)
(PDF 1299 kb)
11032_2010_9462_MOESM5_ESM.pdf (117 kb)
(PDF 116 kb)

References

  1. Abbas A, Lepelley M, Lechevrel M, Sichel F (2004) Assessment of DHPLC usefulness in the genotyping of GSTP1 exon 5 SNP: comparison to the PCR-RFLP method. J Biochem Biophys Meth 59:121–126PubMedCrossRefGoogle Scholar
  2. Al-Chaarani GR, Gentzbittel L, Huang XQ, Sarrafi A (2004) Genotypic variation and identification of QTLs for agronomic traits. using AFLP and SSR markers in RILs of sunflower (Helianthus annuus L.). Theor Appl Genet 109:1353–1360PubMedGoogle Scholar
  3. Al-Chaarani GR, Roustaee A, Gentzbittel L, Mokrani G, Barrault G et al (2002) A QTL analysis of sunflower partial resistance to downy mildew (Plasmopara halstedii) and black stem (Phoma macdonaldii) by the use of recombinant inbred lines (RILs). Theor Appl Genet 104:490–496PubMedCrossRefGoogle Scholar
  4. Alfadil AT, Poormohammad Kiani G, Dechamp-Guillaume L, Gentzbittel L, Sarrafi A (2007) QTL mapping of partial resistance to Phoma basal stem and root necrosis in sunflower (Helianthus annuus L.). Plant Sci 172:815–823CrossRefGoogle Scholar
  5. Arnaud D, Dejardin A, Leple JC, Lesage-Descauses MC, Pilate G (2007) Genome-wide analysis of LIM gene family in Populus trichocarpa, Arabidopsis thaliana, and Oryza sativa. DNA Res 14:103–116PubMedCrossRefGoogle Scholar
  6. Bagge M, Lübberstedt T (2008) Functional markers in wheat: technical and economic aspects. Mol Breed 22:319–328CrossRefGoogle Scholar
  7. Barkley NA, Wang ML (2008) Application of TILLING and EcoTILLING as Reverse Genetic Approaches to Elucidate the Function of Genes in Plants and Animals. Curr Genomics 9:212–226PubMedCrossRefGoogle Scholar
  8. Barreiro LB, Henriques R, Mhlanga MM (2009) High-throughput SNP genotyping: combining tag SNPs and molecular beacons. Meth Mol Biol 578:255–276CrossRefGoogle Scholar
  9. Collard BCY, Cruz CMV, McNally KL, Virk PS, Mackill DJ (2008) Rice molecular breeding laboratories in the genomics era: current status and future considerations. Int J Plant Genomics 2008:524847PubMedGoogle Scholar
  10. Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2004) Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J 37:778–786PubMedCrossRefGoogle Scholar
  11. Cooper JL, Till BJ, Laport RG, Darlow MC, Kleffner JM, Jamai A, El-Mellouki T, Liu S, Ritchie R, Nielsen N, Bilyeu KD, Meksem K, Comai L, Henikoff S (2008) TILLING to detect induced mutations in soybean. BMC Plant Biol 8:9PubMedCrossRefGoogle Scholar
  12. Costabile M, Quach A, Ferrante A (2006) Molecular approaches in the diagnosis of primary immunodeficiency diseases. Hum Mutat 27:1163–1173PubMedCrossRefGoogle Scholar
  13. Dracatos PM, Cogan NO, Dobrowolski MP, Sawbridge TI, Spangenberg GC, Smith KF, Forster JW (2008) Discovery and genetic mapping of single nucleotide polymorphisms in candidate genes for pathogen defence response in perennial ryegrass (Lolium perenne L.). Theor Appl Genet 117:203–219PubMedCrossRefGoogle Scholar
  14. Ehrenreich I, Hanzawa Y, Chou L, Roe J, Kover P, Purugganan M (2009) Candidate gene association mapping of Arabidopsis flowering time. Genetics. doi: 10.1534/genetics.109.105189
  15. Elias R, Till BJ, Mba C, Al-Safadi B (2009) Optimizing TILLING and Ecotilling techniques for potato (Solanum tuberosum L). BMC Res Notes 2:141PubMedCrossRefGoogle Scholar
  16. Fusari CM, Lia VV, Hopp HE, Heinz RA, Paniego NB (2008) Identification of single nucleotide polymorphisms and analysis of linkage disequilibrium in sunflower elite inbred lines using the candidate gene approach. BMC Plant Biol 8:7PubMedCrossRefGoogle Scholar
  17. Galeano CH, Gomez M, Rodriguez LM, Blair MW (2009) CEL I nuclease digestion for SNP discovery and marker development in common bean (Phaseolus vulgaris L.). Crop Sci 49:1–14CrossRefGoogle Scholar
  18. Gilchrist EJ, Haughn GW, Ying CC, Otto SP, Zhuang J, Cheung D, Hamberger B, Aboutorabi F, Kalynyak T, Johnson L, Bohlmann J, Ellis BE, Douglas CJ, Cronk QCB (2006) Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. Mol Ecol 15:1367–1378PubMedCrossRefGoogle Scholar
  19. Gilles PN, Wu DJ, Foster CB, Dillon PJ, Chanock SJ (1999) Single nucleotide polymorphic discrimination by an electronic dot blot assay on semiconductor microchips. Nat Biotechnol 17:365–370PubMedCrossRefGoogle Scholar
  20. Giordano M, Oefner PJ, Underhill PA, Cavalli Sforza LL, Tosi R, Richiardi PM (1999) Identification by denaturing high-performance liquid chromatography of numerous polymorphisms in a candidate region for multiple sclerosis susceptibility. Genomics 56:247–253PubMedCrossRefGoogle Scholar
  21. Haldane JB, Waddington CH (1931) Inbreeding and linkage. Genetics 16:357–374PubMedGoogle Scholar
  22. Han W, Yip SP, Wang J, Yap MK (2004) Using denaturing HPLC for SNP discovery and genotyping, and establishing the linkage disequilibrium pattern for the all-trans-retinol dehydrogenase (RDH8) gene. J Hum Genet 49:16–23PubMedCrossRefGoogle Scholar
  23. Higuchi R, Fockler C, Dollinger G, Watson R (1993) Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (NY) 11:1026–1030CrossRefGoogle Scholar
  24. Hung CC, Su YN, Lin CY, Chang YF, Chang CH, Cheng WF, Chen CA, Lee CN, Lin WL (2008) Comparison of the mismatch-specific endonuclease method and denaturing high-performance liquid chromatography for the identification of HBB gene mutations. BMC Biotechnol 8:62PubMedCrossRefGoogle Scholar
  25. Jones AC, Austin J, Hansen N, Hoogendoorn B, Oefner PJ, Cheadle JP, O’Donovan MC (1999) Optimal temperature selection for mutation detection by denaturing HPLC and comparison to single-stranded conformation polymorphism and heteroduplex analysis. Clin Chem 45:1133–1140PubMedGoogle Scholar
  26. Kolkman JM, Berry ST, Leon A, Slabaugh MB, Tang S, Gao W, Shintani DK, Burke JM, Knapp SJ (2007) Single nucleotide polymorphism and linkage disequilibrium in sunflower. Genetics 177:457–468PubMedCrossRefGoogle Scholar
  27. Kosambi DD (1944) The estimation of a map distance from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  28. Kota R, Varshney RK, Prasad M, Zhang H, Stein N, Graner A (2008) EST-derived single nucleotide polymorphism markers for assembling genetic and physical maps of the barley genome. Funct Integr Genomics 8:223–233PubMedCrossRefGoogle Scholar
  29. Kota R, Wolf M, Michalek W, Graner A (2001) Application of denaturing high-performance liquid chromatography for mapping of single nucleotide polymorphisms in barley (Hordeum vulgare L.). Genome 44:523–528PubMedGoogle Scholar
  30. Lai Z, Livingstone K, Zou Y, Church SA, Knapp SJ, Andrews J, Rieseberg LH (2005) Identification and mapping of SNPs from ESTs in sunflower. Theor Appl Genet 111:1532–1544PubMedCrossRefGoogle Scholar
  31. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  32. Lexer C, Lai Z, Rieseberg LH (2003) Candidate gene polymorphisms associated with salt tolerance in wild sunflower hybrids: implications for the origin of Helianthus paradoxus, a diploid hybrid species. New Phytol 161:225–233CrossRefGoogle Scholar
  33. Lijavetzky D, Cabezas JA, Ibanez A, Rodriguez V, Martinez-Zapater JM (2007) High throughput SNP discovery and genotyping in grapevine (Vitis vinifera L.) by combining a re-sequencing approach and SNPlex technology. BMC Genomics 8:424PubMedCrossRefGoogle Scholar
  34. Lin CH, Yeakley JM, McDaniel TK, Shen R (2009) Medium- to high-throughput SNP genotyping using VeraCode Microbeads. In: Bugert P (ed) DNA and RNA profiling in human blood: methods and protocols. Humana Press, pp 129–142Google Scholar
  35. Liu A, Burke JM (2006) Patterns of nucleotide diversity in wild and cultivated sunflower. Genetics 173:321–330PubMedCrossRefGoogle Scholar
  36. Livak KJ, Flood SJ, Marmaro J, Giusti W, Deetz K (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Meth Appl 4:357–362Google Scholar
  37. Makridakis NM, Reichardt JK (2001) Multiplex automated primer extension analysis: simultaneous genotyping of several polymorphisms. Biotechniques 31:1374–1380PubMedGoogle Scholar
  38. Nieto C, Piron F, Dalmais M, Marco CF, Moriones E, Gómez-Guillamón ML, Truniger V, Gómez P, Garcia-Mas J, Aranda MA, Bendahmane A (2007) EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility. BMC Plant Biol 7:34PubMedCrossRefGoogle Scholar
  39. Oefner P, Underhill P (1998) DNA mutation detection using denaturing high-performance liquid chromatography (DHPLC). In: Current protocols in human genetics. Wiley, New York, pp 7.10.11–17.10.12. Supplement 19:7.10.1–7.10.12Google Scholar
  40. Oleykowski CA, Bronson Mullins CR, Godwin AK, Yeung AT (1998) Mutation detection using a novel plant endonuclease. Nucleic Acids Res 26:4597–4602PubMedCrossRefGoogle Scholar
  41. Pajerowska-Mukhtar K, Stich B, Achenbach U, Ballvora A, Lubeck J, Strahwald J, Tacke E, Hofferbert HR, Ilarionova E, Bellin D, Walkemeier B, Basekow R, Kersten B, Gebhardt C (2009) Single nucleotide polymorphisms in the allene oxide synthase 2 gene are associated with field resistance to late blight in populations of tetraploid potato cultivars. Genetics 181:1115–1127PubMedCrossRefGoogle Scholar
  42. Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor SP (1994) Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci USA 91:5022–5026PubMedCrossRefGoogle Scholar
  43. Perry JA, Wang TL, Welham TJ, Gardner S, Pike JM, Yoshida S, Parniske M (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol 131:866–871PubMedCrossRefGoogle Scholar
  44. Poormohammad Kiani S, Grieu P, Maury P, Hewezi T, Gentzbittel L, Sarrafi A (2007a) Genetic variability for physiological traits under drought conditions and differential expression of water stress-associated genes in sunflower (Helianthus annuus L.). Theor Appl Genet 114:193–207PubMedCrossRefGoogle Scholar
  45. Poormohammad Kiani S, Maury P, Sarrafi A, Grieu P (2008) QTL analysis of chlorophyll fluorescence parameters in sunflower (Helianthus annuus L.) under well-watered and water-stressed conditions. Plant Sci 175:565–573CrossRefGoogle Scholar
  46. Poormohammad Kiani S, Talia P, Grieu P, Maury P, Hewezi T, Gentzbittel L, Sarrafi A (2007b) Genetic analysis of plant water status and osmotic adjustment in recombinant inbred lines of sunflower under two water treatments. Plant Sci 178:773–787CrossRefGoogle Scholar
  47. Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100PubMedCrossRefGoogle Scholar
  48. Randall LP, Coldham NG, Woodward MJ (2005) Detection of mutations in Salmonella enterica gyrA, gyrB, parC and parE genes by denaturing high performance liquid chromatography (DHPLC) using standard HPLC instrumentation. J Antimicrob Chemother 56:619–623PubMedCrossRefGoogle Scholar
  49. Ren B, Zhou J-M, Komiyama M (2004) Straightforward detection of SNPs in doublestranded DNA by using exonuclease III/nuclease S1/PNA system. Nucleic Acids Res 34:e42CrossRefGoogle Scholar
  50. Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers [http://www.frodo.wi.mit.edu/]. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386
  51. Sala CA, Bulos M, Echarte M, Whitt SR, Ascenzi R (2008) Molecular and biochemical characterization of an induced mutation conferring imidazolinone resistance in sunflower. Theor Appl Genet 118:105–112PubMedCrossRefGoogle Scholar
  52. Schiex T, Gaspin C (1997) CARTHAGENE: constructing and joining maximum likelihood genetic maps. Proc Int Conf Intell Syst Mol Biol 5:258–267PubMedGoogle Scholar
  53. Shirasawa K, Maeda H, Monna L, Kishitani S, Nishio T (2007) The number of genes having diVerent alleles between rice cultivars estimated by SNP analysis. Theor Appl Genet 115:1067–1074PubMedCrossRefGoogle Scholar
  54. Southern EM (1996) High-density gridding: techniques and applications. Curr Opin Biotechnol 7:85–88PubMedCrossRefGoogle Scholar
  55. Spiegelman JI, Mindrinos MN, Oefner PJ (2000) High-accuracy DNA sequence variation screening by DHPLC. Biotechniques 29:1084–1090, 1092Google Scholar
  56. Tang S, Kishore VK, Knapp SJ (2003) PCR-multiplexes for a genome-wide framework of simple sequence repeat marker loci in cultivated sunflower. Theor Appl Genet 107:6–19PubMedGoogle Scholar
  57. Till BJ, Burtner C, Comai L, Henikoff S (2004) Mismatch cleavage by single-strand specific nucleases. Nucleic Acids Res 32:2632–2641PubMedCrossRefGoogle Scholar
  58. Till BJ, Colbert T, Tompa R, Enns LC, Codomo CA, Johnson JE, Reynolds SH, Henikoff JG, Greene EA, Steine MN, Comai L, Henikoff S (2003) High-throughput TILLING for functional genomics. In: Grotewold E (ed) Plant Functional Genomics: Methods and Protocols. Humana Press, Totowa, NJ, pp 205–220CrossRefGoogle Scholar
  59. Till BJ, Cooper J, Tai TH, Colowit P, Greene EA, Henikoff S, Comai L (2007) Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol 7:19PubMedCrossRefGoogle Scholar
  60. Tsuchihashi Z, Dracopoli NC (2002) Progress in high throughput SNP genotyping methods. Pharmacogenomics J 2:103–110PubMedCrossRefGoogle Scholar
  61. Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308PubMedCrossRefGoogle Scholar
  62. Uauy C, Paraiso F, Colasuonno P, Tran RK, Tsai H, Berardi S, Comai L, Dubcovsky J (2009) A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat. BMC Plant Biol 9:115PubMedCrossRefGoogle Scholar
  63. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78PubMedCrossRefGoogle Scholar
  64. Wagner T, Stoppa-Lyonnet D, Fleischmann E, Muhr D, Pages S, Sandberg T, Caux V, Moeslinger R, Langbauer G, Borg A, Oefner P (1999) Denaturing high-performance liquid chromatography detects reliably BRCA1 and BRCA2 mutations. Genomics 62:369–376PubMedCrossRefGoogle Scholar
  65. Wang H-Y, Luo M, Tereshchenko IV, Frikker DM, Cui X, Li JY, Hu G, Chu Y, Azaro MA, Lin Y, Shen L, Yang Q, Kambouris ME, Gao R, Shih W, Li H (2005) A genotyping system capable of simultaneously analyzing > 1000 single nucleotide polymorphisms in a haploid genome. Genome Res 15:276–283PubMedCrossRefGoogle Scholar
  66. Wang J, Wang W, Liu Y, Duo L, Huang L, Jiang X (2009) The method of single-nucleotide variations detection using capillary electrophoresis and molecular beacons. Mol Biol Rep 36:1903–1908PubMedCrossRefGoogle Scholar
  67. Wang N, Wang Y, Tian F, King GJ, Zhang C, Long Y, Shi L, Meng J (2008) A functional genomics resource for Brassica napus: development of an EMS mutagenized population and discovery of FAE1 point mutations by TILLING. New Phytol 180:751–765PubMedCrossRefGoogle Scholar
  68. Weil CF, Monde R-A (2007) Getting the point—mutations in maize. Crop Sci 47:S60–S67CrossRefGoogle Scholar
  69. Xiao W, Oefner PJ (2001) Denaturing high-performance liquid chromatography: A review. Hum Mutat 17:439–474PubMedCrossRefGoogle Scholar
  70. Xin Z, Wang ML, Barkley NA, Burow G, Franks C, Pederson G, Burke J (2008) Applying genotyping (TILLING) and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population. BMC Plant Biol 8:103PubMedCrossRefGoogle Scholar
  71. Yang W, Bai X, Kabelka E, Eaton C, Kamoun S, van der Knaap E, Francis D (2004) Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Mol Breed 14:21–34CrossRefGoogle Scholar
  72. Yu B, Sawyer NA, Caramins M, Yuan ZG, Saunderson RB, Pamphlett R, Richmond DR, Jeremy RW, Trent RJ (2005) Denaturing high performance liquid chromatography: high throughput mutation screening in familial hypertrophic cardiomyopathy and SNP genotyping in motor neurone disease. J Clin Pathol 58:479–485PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Corina M. Fusari
    • 1
  • Verónica V. Lia
    • 1
    • 2
  • Verónica Nishinakamasu
    • 1
  • Jeremías E. Zubrzycki
    • 1
  • Andrea F. Puebla
    • 1
  • Alberto E. Maligne
    • 1
  • H. Esteban Hopp
    • 1
    • 2
  • Ruth A. Heinz
    • 1
    • 2
  • Norma B. Paniego
    • 1
  1. 1.Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Biotecnología (CNIA)Buenos AiresArgentina
  2. 2.Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresCiudad UniversitariaArgentina

Personalised recommendations