Molecular Breeding

, Volume 27, Issue 4, pp 533–547 | Cite as

Structure of genetic diversity in Olea europaea L. cultivars from central Italy

  • Emidio Albertini
  • Renzo Torricelli
  • Elena Bitocchi
  • Lorenzo Raggi
  • Gianpiero Marconi
  • Luciano Pollastri
  • Gabriella Di Minco
  • Alfredo Battistini
  • Roberto Papa
  • Fabio Veronesi


The olive is considered one of the most important fruit crops of the Mediterranean basin where it shows a wide range of variability, with about 2,000 cultivars. Italy, with about 500 cultivars, plays a fundamental role. The ability to discriminate olive cultivars and estimate genetic variability are important factors in better management of genetic resources and in helping to understand how genetic diversity is partitioned among cultivars. The two main objectives of the present investigation were to evaluate the identity of cultivars grown in Abruzzo region, central Italy, and to study their genetic structure. We applied amplified fragment length polymorphism (AFLP) methodology on 84 genotypes belonging to the most relevant and oldest varieties cultivated in Abruzzo and on six unknown genotypes. The information content of data was evaluated using the Marker Ratio index and the Polymorphic Index Content. Moreover, STRUCTURE software was used to investigate the genetic population structure. The analysis enabled us to clearly distinguish eight cultivars within seven clusters. Additionally, one cluster was found to have various minor cultivars and showed a relatively high level of diversity. The partitioning of genetic diversity showed that the largest amount of molecular variance was within groups. Our data suggest that both sexual and clonal propagation have played an important role in the evolution of olive cultivars. In our hypothesis, some ancestral population spread in central Italy with a relevant role of seed propagation, followed by a selection of superior clones from which more traditional varieties originated. In a few cases, hybridization should be taken into consideration to explain the diffusion of recently developed cultivars.


Olea europaea Population structure AFLP STRUCTURE Genetic diversity Olive 



This work was funded by ARSSA Abruzzo. We are grateful to Prof. Carmine Varasano, Liceo Classico Annibale Mariotti, Perugia, Italy, for his advice on Latin authors and to Prof. Franco Lorenzetti for his advice.

Supplementary material

11032_2010_9452_MOESM1_ESM.doc (150 kb)
(DOC 149 kb)


  1. Alba V, Montemurro C, Sabetta W, Pasqualone A, Blanco A (2009) SSR-based identification key of cultivars of Olea europaea L. diffused in Southern-Italy. Sci Hort 123:11–16CrossRefGoogle Scholar
  2. Angiolillo A, Mencuccini M, Baldoni L (1999) Olive genetic diversity assessed using amplified fragment length polymorphisms. Theor Appl Genet 98:411–421CrossRefGoogle Scholar
  3. Baldoni L, Tosti N, Ricciolini C, Belaj A, Arcioni S, Pannelli G, Germana MA, Mulas M, Porceddu A (2006) Genetic structure of wild and cultivated olives in the Central Mediterranean Basin. Ann Bot 98:935–942PubMedCrossRefGoogle Scholar
  4. Baldoni L, Cultrera NG, Mariotti R, Ricciolini C, Arcioni S, Vendramin GG, Buonamici A, Porceddu A, Sarri V, Ojeda MA, Trujillo I, Rallo L, Belaj A, Perri E, Salimonti A, Muzzalupo I, Casagrande A, Lain O, Messina R, Testolin R (2009) A consensus list of microsatellite markers for olive genotyping. Mol Breed 24:213–231CrossRefGoogle Scholar
  5. Bartoloni S, Guerriero R (1995) Self-compatibility in several clones of oil olive cv. Leccino. Adv Hort Sci 9:71–74Google Scholar
  6. Belaj A, Trujillo I, De la Rosa R, Rallo L, Gimenez MJ (2001) Polymorphism and discrimination capacity of randomly amplified polymorphic markers in an olive germplasm bank. J Am Soc Hort Sci 126:64–71Google Scholar
  7. Belaj A, Satovic Z, Cipriani G, Baldoni L, Testolin R, Rallo L, Trujillo I (2003) Comparative study of the discriminating capacity of RAPD, AFLP and SSR markers and their effectiveness in establishing genetic relationships in olive. Theor Appl Genet 107:736–744PubMedCrossRefGoogle Scholar
  8. Belaj A, Rallo L, Trujillo I, Baldoni L (2004) Using RAPD and AFLP markers to distinguish individuals obtained by clonal selection of Arbequina and Manzanilla de Sevilla olive. Hort Sci 39:1566–1570Google Scholar
  9. Besnard G, Bervillè A (2000) Multiple origins for Mediterranean olive (Olea europaea L. subsp. europaea) based upon mitochondrial DNA polymorphisms. C R Acad Sci Sèr III 323:173–181PubMedGoogle Scholar
  10. Besnard G, Baradat P, Bervillé A (2001a) Genetic relationships in the olive (Olea europaea L.) reflect multilocal selection of cultivars. Theor Appl Genet 102:251–258CrossRefGoogle Scholar
  11. Besnard G, Breton C, Baradat P, Khadari B, Bervillè A (2001b) Cultivar identification in the olive Olea europaea L. based on RAPDs. J Am Hort Sci 126:668–675Google Scholar
  12. Bini G, Lensi M (1981) Observazioni su alcuni aspetti dell ‘ontogenesi’ fiorale ne olivo. Riv Ortoflorofrutticoltura Ital 65:371–380Google Scholar
  13. Bogani P, Cavalieri D, Petrucelli R, Polsinelli L, Roselli G (1994) Identification of olive tree cultivars by using random amplified polymorphic DNA. Acta Hort 356:98–101Google Scholar
  14. Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331PubMedGoogle Scholar
  15. Bracci T, Sebastiani L, Busconi M, Fogher C, Belaj A, Trujillo I (2009) SSR markers reveal the uniqueness of olive cultivars from the Italian region of Liguria. Sci Hort 122:209–215CrossRefGoogle Scholar
  16. Breton C, Guerin J, Ducatillion C, Médail F, Kull CA, Bervillé A (2008) Taming the wild and ‘wilding’ the tame: tree breeding and dispersal in Australia and the Mediterranean. Plant Sci 175:197–205CrossRefGoogle Scholar
  17. Cantini C, Cimato A, Sani G (1999) Morphological evaluation of olive germplasm present in Tuscany region. Euphytica 109:173–181CrossRefGoogle Scholar
  18. Carriero F, Fontanazza G, Cellini F, Giorio G (2002) Identification of simple sequence repeats (SSRs) in olive (Olea europaea L.). Theor Appl Genet 104:301–307PubMedCrossRefGoogle Scholar
  19. Cipriani G, Marrazzo MT, Marconi R, Cimato A, Testolin R (2002) Microsatellite markers isolated in olive (Olea europaea L.) are suitable for individual fingerprinting and reveal polymorphism within ancient cultivars. Theor Appl Genet 104:223–228PubMedCrossRefGoogle Scholar
  20. Consolandi C, Palmieri L, Severgnini M, Maestri E, Marmiroli N, Agrimonti C, Baldoni L, Donini P, De Bellis G, Castiglioni B (2008) A procedure for olive oil traceability and authenticity: DNA extraction, multiplex PCR and LDR-universal array analysis. Eur Food Res Technol 227:1429–1438CrossRefGoogle Scholar
  21. de la Rosa R, Angiolillo A, Guerrero C, Pellegrini M, Rallo L, Besnard G, Berville A, Martin A, Baldoni L (2003) A first linkage map of olive (Olea europaea L.) cultivars using RAPD, AFLP, RFLP and SSR markers. Theor Appl Genet 106:1273–1282PubMedGoogle Scholar
  22. Erre P, Chessa I, Munoz-Diez C, Belaj A, Rallo L, Trujillo I (2009) Genetic diversity and relationships between wild and cultivated olives (Olea europaea L.) in Sardinia as assessed by SSR markers. Genet Res Crop Evol. doi  10.1007/s10722-009-9449-8
  23. Evanno G, Regnaud S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  24. Fabbri A, Hormaza JI, Polito VS (1995) Random amplified polymorphic DNA analysis of olive (Olea europaea L.) cultivars. J Am Soc Hort Sci 120:538–542Google Scholar
  25. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  26. Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578PubMedCrossRefGoogle Scholar
  27. Figuieral I, Terral JF (2001) Late quaternary refugia of Mediterranean taxa in the Portuguese Estremadura: charcoal based paleovegetation and climatic reconstruction. Q Sci Rev 21:549–558CrossRefGoogle Scholar
  28. Gemas VJ, Rijo-Johansen MJ, Tenreiro R, Fevereiro P (2000) Inter and intravarietal analysis of three Olea europaea L. cultivars using the RAPD techniques. J Hort Sci Biotechnol 75:312–319Google Scholar
  29. Gemas VJ, Almadanim MC, Tenreiro R, Martins A, Fevereiro P (2004) Genetic diversity in the Olive tree (Olea europaea L. subsp. europaea) cultivated in Portugal revealed by RAPD and ISSR markers. Gen Res Crop Evol 51:501–511CrossRefGoogle Scholar
  30. Green PS, Wickens GE (1989) The Olea europaea complex. In: Tan K (ed) The Davis & Hedge Festschrift. Edinburgh University Press, Edinburgh, pp 287–299Google Scholar
  31. Griggs W-H, Hartmann H-T, Bradley M-V, Iwakiri B-T, Whisler J-E (1975) Olive pollination in California. Division of Agricultural Sciences, University of California, USAGoogle Scholar
  32. Guerin J, Sedgley M (2007) Cross-pollination in olive cultivars. Rural Industries Research and Development Corporation, BartonGoogle Scholar
  33. Harter AV, Gardner KA, Falush D, Lentz DL, Bye RA, Rieseberg LH (2004) Origin of extant domesticated sunflowers in eastern North America. Nature 430:201–205PubMedCrossRefGoogle Scholar
  34. Hatzopoulos P, Banilas G, Giannoulia K, Gazis F, Nikoloudakis N, Milioni D, Haralampidis K (2002) Breeding, molecular markers and molecular biology of the olive tree. Eur J Lipid Sci Technol 104:574–586CrossRefGoogle Scholar
  35. Hernandez P, de la Rosa R, Rallo L, Dorado G, Martin A (2001) First evidence of a retrotransposon in olive (Olea europaea): implications in plant variety identification by SCAR marker-development. Theor Appl Genet 102:1082–1087CrossRefGoogle Scholar
  36. Hess J, Kadereit JW, Vargas P (2000) The colonisation history of Olea europaea L. in Macaronesia based on internal transcribed spacer (RAPD), and (ISSR). Mol Ecol 9:857–868PubMedCrossRefGoogle Scholar
  37. Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetics 49:725–738PubMedGoogle Scholar
  38. Krauss SL (2000) Accurate gene diversity estimates from amplified length polymorphism (AFLP) markers. Mol Ecol 9:1241–1245PubMedCrossRefGoogle Scholar
  39. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings Bioinform 5:150–163CrossRefGoogle Scholar
  40. Lynch M, Milligan BG (1994) Analysis of populations genetic structure with RAPD markers. Mol Ecol 3:91–99PubMedCrossRefGoogle Scholar
  41. Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197CrossRefGoogle Scholar
  42. Mataix J, Barbancho FJ (2006) Olive oil in the mediterranean food. In: Quiles JL, Ramírez-Tortosa MC, Yaqoob P (eds) Olive oil and health. CABI publishing, CambridgeGoogle Scholar
  43. Mekuria GT, Collins CG, Sedgley M (1999) Genetic variability between different accessions of some common commercial olive cultivars. J Hort Sci Biotech 74:309–314Google Scholar
  44. Mekuria GT, Collins G, Sedgley M (2002) Genetic diversity within an isolated olive (Olea europaea L.) population in relation to feral spread. Sci Hort 94:91–105CrossRefGoogle Scholar
  45. Mookerjee S, Guerin J, Collins G, Ford C, Sedgley M (2005) Paternity analysis using microsatellite markers to identify pollen donors in an olive grove. Theor Appl Genet 111:1174–1182PubMedCrossRefGoogle Scholar
  46. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  47. Ouazzani N, Lumaret R, Villemur P, Di Giusto F (1993) Leaf allozyme variation in cultivated and wild olive trees (Olea europaea L.). J Hered 84:34–42Google Scholar
  48. Owen CA, Bita EC, Banilas G, Hajjar SE, Sellianakis V, Aksoy U, Hepaksoy S, Chamoun R, Talhook SN, Metzidakis I, Hatzopoulos P, Kalaitzis P (2005) AFLP reveals structural details of genetic diversity within cultivated olive germplasm from the Eastern Mediterranean. Theor Appl Genet 110:1169–1176PubMedCrossRefGoogle Scholar
  49. Pietrangeli F, Russo A (1997) Olivi D’Abruzzo. Contributo alla conoscenza del germoplasma olivicolo autoctono. ARSSA, Grafiche Di Prinzio, Guardiagrele (Ch), ItalyGoogle Scholar
  50. Pliny the Elder (77 AD) Naturalis Historia. Vol. XV and XIX. Version published in 1984 by Giradini, PisaGoogle Scholar
  51. Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed 2:225–238CrossRefGoogle Scholar
  52. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure from multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  53. Razzi S (1574) La vita in abruzzo nel cinquecento. Polla editoreGoogle Scholar
  54. Riley FR (2002) Olive oil production on Bronze Age in Crete: nutritional properties, processing methods and storage life of Minoan olive oil. Oxf J Archaeol 21:63–75CrossRefGoogle Scholar
  55. Rohlf FJ (1998) NTSYS-pc. Numerical taxonomy and multivariate analysis system. Applied Biostatistics, New YorkGoogle Scholar
  56. Rotondi A, Magli M, Ricciolini C, Baldoni L (2003) Morphological and molecular analyses for the characterization of a group of Italian olive cultivars. Euphytica 132:129–137CrossRefGoogle Scholar
  57. Sanz-Cortés F, Badenes ML, Paz S, Íñiguez A, Llàcer G (2001) Molecular characterization of olive cultivars using RAPD markers. J Am Soc Hort Sci 126:7–12Google Scholar
  58. Sanz-Cortés F, Parfitt DE, Romero C, Struss D, Llacer G, Badenes ML (2003) Intraspecific olive diversity assessed with AFLP. Plant Breed 122:173–177CrossRefGoogle Scholar
  59. Singh R-P, Kar P-L (1980) Compatibility studies in some olive cultivars. Prog Hort 12:9–15Google Scholar
  60. Sokal RR, Sneath PHA (1963) Principles of numerical taxonomy. W. H. Freeman, San FranciscoGoogle Scholar
  61. Ugrinovic K, Stampar F (1996) Fertilization of olive (Olea europaea L.) cultivars ‘Istrska Belica’, ‘Pendolino’ and ‘Leccino’ by different pollinators. Zbornik Biotehniske Fakultete Univerze v Ljubljani, -Kmetijstvo 67:183–188Google Scholar
  62. Vekemans X (2002) AFLP-SURV, version 1.0. Distributed by the author. Laboratoire de Génétique et Ecologie Végétale, Université Libre de Bruxelles, BelgiumGoogle Scholar
  63. Varro MT (37 BC). De Re Rustica. Version published in 1996 by UTET, TorinoGoogle Scholar
  64. Vos P, Hogers R, Bleeker M, Reijans M, Vande Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  65. Wiesman Z, Avidan N, Lavee S, Quebedeaux B (1998) Molecular characterization of common olive cultivars in Israel and the West Bank using randomly amplified polymorphic DNA (RAPD) markers. J Am Soc Hort Sci 123:837–841Google Scholar
  66. Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354Google Scholar
  67. Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Emidio Albertini
    • 1
  • Renzo Torricelli
    • 1
  • Elena Bitocchi
    • 2
  • Lorenzo Raggi
    • 1
  • Gianpiero Marconi
    • 1
  • Luciano Pollastri
    • 3
  • Gabriella Di Minco
    • 3
  • Alfredo Battistini
    • 1
  • Roberto Papa
    • 2
  • Fabio Veronesi
    • 1
  1. 1.Dipartimento di Biologia ApplicataUniversità di PerugiaPerugiaItaly
  2. 2.Dipartimento di Scienze Ambientali e delle Produzioni VegetaliUniversità Politecnica delle MarcheAnconaItaly
  3. 3.ARSSA (Agenzia Regionale per i Servizi di Sviluppo Agricolo) Abruzzosede di PescaraItaly

Personalised recommendations