Skip to main content

Advertisement

Log in

Development of an allele-mining set in rice using a heuristic algorithm and SSR genotype data with least redundancy for the post-genomic era

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The allelic diversity of a collection of 4046 rice accessions was assessed using 15 neutral SSR markers distributed throughout the genome. A total of 482 alleles were detected; the average allelic richness was 32.1 alleles per locus. Using a heuristic approach, an allele-mining set was successfully developed on the basis of SSR marker data. 162 accessions of the allele-mining set, accounting for about 4.0% of the entire collection, captured all of the alleles (482) retained in the entire collection, which showed 100% coverage of alleles with minimum redundancy. As a result of validation of this heuristic approach using another 14 SSR markers associated with starch, 70% of the total alleles and 83% of the restricted alleles (allele frequency > 0.05%) were captured in this allele-mining set. The results showed that the heuristic approach meets the condition as an allele-mining set even when applied to another specific set of markers related to starch synthesis in the same entire and allele-mining set. The newly developed methodology for developing allele-mining sets can be used in other crop species. By retaining all alleles of the entire collection, this allele-mining set will be useful for future studies on introducing unused useful alleles into elite rice varieties by breeders in the post-genomic era.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrama HA, Yan WG, Lee F, Fjellstrom R, Chen MH, Jia M, McClung A (2009) Genetic assessment of a mini-core subset developed from the USDA Rice Genebank. Crop Sci 49:1336–1346

    Article  Google Scholar 

  • Balfourier F, Roussel V, Strelchenko P, Exbrayat-Vinson F, Sourdille P, Boutet G, Koenig J, Ravel C, Mitrofanova O, Beckert M, Charmet G (2007) A worldwide bread wheat core collection arrayed in a 384-well plate. Theor Appl Genet 114:1265–1275

    Article  PubMed  Google Scholar 

  • Bataillon TL, David JL, Schoen DJ (1996) Neutral genetic markers and conservation genetics: simulated germplasm collections. Genetics 144:409–417

    CAS  PubMed  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    CAS  PubMed  Google Scholar 

  • Bretting PK, Widrlechner MP (1995) Genetic markers and plant genetic resource management. Plant Breed Rev 31:11–86

    Google Scholar 

  • Brown AHD (1989) Core collections: a practical approach to genetic resources management. Genome 31:818–824

    Google Scholar 

  • Brown AHD (1995) The core collection at the crossroads. In: Hodgkin T, Brown AHD, van Hintum TJL (eds) Core collections of plant genetic resources. Wiley, Chichester, pp 3–19

    Google Scholar 

  • Brown AHD, Grace JP, Speer SS (1987) Designation of a core collection of perennial glycine. Soybean Genet Newsletter 14:59–70

    Google Scholar 

  • Chandra S, Huaman Z, Hari Krishna S, Ortiz R (2002) Optimal sampling strategy and core collection size of Andean tetraploid potato based on isozyme data—a simulation study. Theor Appl Genet 104:1325–1334

    Article  CAS  PubMed  Google Scholar 

  • Charmet G, Balfourier F (1995) The use of geo statistics for sampling a core collection of perennial ryegrass population. Genet Resour Crop Evol 42:303–309

    Article  Google Scholar 

  • Chavarriaga-Aguirre P, Maya MM, Tohme J, Duque MC, Iglesias C, Bonierbale MW, Kresovich S, Kochert G (1999) Using microsatellites, isozymes and AFLPs to evaluate genetic diversity and redundancy in the cassava core collection and to assess the usefulness of DNA-based markers to maintain germplasm collections. Mol Breed 5:263–273

    Article  CAS  Google Scholar 

  • Collard BCY, Cruz CMV, McNally KL, Virk PS, Mackill DJ (2008) Rice molecular breeding laboratories in the genomics era: current status and future considerations. Int J Plant Genomics 2008:1–25

    Article  Google Scholar 

  • Crossa J, Basford K, Taba S, DeLacy I, Silva E (1995) Three-mode analysis of maize using morphological and agronomic attributes measured in multilocation Trials. Crop Sci 35:1483–1491

    Article  Google Scholar 

  • Cunff LL, Fournier-Level A, Laucou V, Vezzulli S, Lacombe T, Adam-Blondon AF, Boursiquot JM, Patrice T (2008) Construction of nested genetic core collections to optimize the exploitation of natural diversity in Vitis vinifera L. subsp. Sativa. BMC Plant Biol 8:31

    Article  PubMed  Google Scholar 

  • Diwan N, McIntosh MS, Bauchan GR (1995) Methods of developing a core collection of annual Medicago species. Theor Appl Genet 90:755–761

    Article  Google Scholar 

  • Ebana K, Kojima Y, Fukuoka S, Nagamine T, Kawase M (2008) Development of mini core collection of Japanese rice landrace. Breed Sci 58:281–291

    Article  Google Scholar 

  • Franco J, Crossa J, Taba S, Shands H (2003) A multivariate method for classifying cultivars and studying group × environment × trait interaction. Crop Sci 43:1249–1258

    Article  Google Scholar 

  • Franco J, Crossa J, Taba S, Shands H (2005) A sampling strategy for conserving genetic diversity when forming core subsets. Crop Sci 45:1035–1044

    Article  Google Scholar 

  • Franco J, Crossa J, Warburton ML, Taba S (2006) Sampling strategies for conserving maize diversity when forming core subsets using genetic markers. Crop Sci 46:854–864

    Article  Google Scholar 

  • Frankel OH (1984) Genetic perspectives of germplasm conservation. In: Arber W, limensee K, Peacock WJ, Starlinger P (eds) Genetic manipulation: impact on man and society. Cambridge University Press, Cambridge, pp 161–171

    Google Scholar 

  • Frankel OH, Brown AHD (1984) Plant genetic resources today: a critical appraisal. In: Holden JHW, Williams JT (eds) Crop genetic resources: conservation and evaluation. Allen & Unwin Ltd, London, pp 249–257

    Google Scholar 

  • Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638

    Article  CAS  PubMed  Google Scholar 

  • Gouesnard B, Bataillon TM, Decoux G, Rozale C, Schoen DJ, David JL (2001) Mstrat: an algorithm for building germplasm core collections by maximizing allelic or phenotypic richness. J Hered 92:93–94

    Article  CAS  PubMed  Google Scholar 

  • Hennink S, Zeven AC (1991) The interpretation of Nei and Shannon-Weaver within population variation indices. Euphytica 51:235–240

    Article  Google Scholar 

  • Hokanson SC, Szewc-McFadden AK, Lamboy WF, McFerson JR (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus domestica borkh core subset collection. Theor Appl Genet 97:671–683

    Article  CAS  Google Scholar 

  • Holden JHW (1984) The second ten years. In: Holden JHW, Williams JT (eds) Crop genetic resources: conservation and evaluation. Allen and Unwin, Winchester, pp 277–285

    Google Scholar 

  • Hu J, Zhu J, Xu HM (2000) Methods of constructing core collections by stepwise clustering with three sampling strategies based on the genotypic values of crops. Theor Appl Genet 101:264–268

    Article  CAS  Google Scholar 

  • Huaman Z, Aguilar C, Ortiz R (1999) Selecting a Peruvian sweet potato core collection on the basis of morphological, ecogeographical, and disease and pest reaction data. Theor Appl Genet 98:840–844

    Article  Google Scholar 

  • Jansen J, van Hintum ThJL (2007) Genetic distance sampling: a novel sampling method for obtaining core collections using genetic distances with an application to cultivated lettuce. Theor Appl Genet 114:421–428

    Article  CAS  PubMed  Google Scholar 

  • Joe T, Orlando GD (1996) AFLP analysis of gene pools of a wild bean core collection. Crop Sci 36:1375–1384

    Article  Google Scholar 

  • Kim KW, Chung HK, Cho GT, Ma KH, Chandrabalan D, Gwag JG, Kim TS, Cho EG, Park YJ (2007) PowerCore: a program applying the advanced M strategy with a heuristic search for establishing allele mining sets. Bioinformatics 23:2155–2162

    Article  CAS  PubMed  Google Scholar 

  • Kresovich S, Luongo AJ, Schloss SJ (2002) Mining the gold: finding allelic variants for improved crop conservation and use. In: Engels JMM, Rao VR, Brown AHD, Jackson MT (eds) Managing plant genetic diversity. CABI, Wallingford, pp 379–386

    Google Scholar 

  • Latha R, Rubia L, Bennett J, Swaminathan MS (2004) Allele mining for stress tolerance genes in Oryza species and related germplasm. Mol Biotechnol 27:101–108

    Article  CAS  PubMed  Google Scholar 

  • Li ZC, Zhang HL, Zeng YW, Yang ZY, Shen SQ, Sun CQ, Wang XK (2000) Study on sampling schemes of core collection of local varieties of rice in Yunnan, China. Sci Agri Sin 33:1–7

    Google Scholar 

  • Li CT, Shi CH, Wu JG, Xu HM, Zhang HZ, Ren YL (2004) Methods of developing core collections based on the predicted genotypic value of rice (Oryza sativa L.). Theor Appl Genet 108:1172–1176

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    Article  CAS  PubMed  Google Scholar 

  • Malysheva-Otto LV, Ganal MW, Röder MS (2006) Analysis of molecular diversity, population structure and linkage disequilibrium in a worldwide survey of cultivated barley germplasm (Hordeum vulgare L.). BMC Genet 7:6

    Article  PubMed  Google Scholar 

  • Marita JM, Rodriguez JM, Nienhuis J (2000) Development of an algorithm identifying maximally diverse core collections. Genet Resour Crop Evol 47:515–526

    Article  Google Scholar 

  • McKhann HI, Camilleri C, Berard A, Bataillon T, David JL, Reboud X, Corre VL, Caloustian C, Gut IG, Brunel D (2004) Nested core collections maximizing genetic diversity in Arabidopsis thaliana. Plant J 38:193–202

    Article  CAS  PubMed  Google Scholar 

  • Mosjidis JA, Klingler KA (2006) Genetic diversity in the core subset of the US red clover germplasm. Crop Sci 46:758–762

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  CAS  PubMed  Google Scholar 

  • Ortiz R, Ruiz-Tapia EN, Mujica-Sanchez A (1998) Sampling strategy for a core collection of Peruvian quinoa germplasm. Theor Appl Genet 96:475–483

    Article  Google Scholar 

  • Parsons BJ, Newbury HJ, Jackson MT, Ford-Lloyd BV (1999) The genetic structure and conservation of aus, aman and boro rices from Bangladesh. Genet Resour Crop Evol 46:587–598

    Article  Google Scholar 

  • Peeters JP, Martinelli JA (1989) Hierarchical cluster analyses as a tool to manage variation in germplasm collections. Theor Appl Genet 78:42–48

    Article  Google Scholar 

  • Perry MC, Mclntosh MS, Stoner AK (1991) Geographical patterns of variation in the USDA soybean germplasm collection: II. allozyme frequencies. Crop Sci 31:1356–1360

    Article  Google Scholar 

  • Qiu LJ, Cao YS, Chang RZ, Zhou XA, Wang GX, Sun JY, Xie H, Zhang B, Li XH, Xu ZY (2003) Establishment of Chinese soybean (G. max) core collection. I. Sampling strategy. Sci Agri Sin 36:1442–1449

    Google Scholar 

  • Rincon F, Johnson B, Crossa J, Taba S (1996) Cluster analysis, and approach to sampling variability in maize accessions. Maydica 41:307–316

    Google Scholar 

  • Rogers JS (1972) Measures of genetic similarity and genetic distance. Stud Genet VII Univ Tex Publ 7213:145–153

    Google Scholar 

  • Ronfort J, Bataillon T, Santoni S, Delalande M, David JL, Prosperi JM (2006) Microsatellite diversity and broad scale geographic structure in a model legume: building a set of nested core collection for studying naturally occurring variation in Medicago truncatula. BMC Plant Biol 6:28

    Article  PubMed  Google Scholar 

  • Schoen DJ, Brown AHD (1993) Conservation of allelic richness in wild crop relatives is aided by assessment of genetic markers. Proc Natl Acad Sci USA 90:10623–10627

    Article  CAS  PubMed  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Szalma SJ, Buckler ES, Snook ME, McMullen MD (2005) Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theor Appl Genet 110:1324–1333

    Article  CAS  PubMed  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed bank and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya HD, Ortiz R (2001) A mini core subset for capturing diversity and promoting utilization of chickpea genetic resources in crop improvement. Theor Appl Genet 102:1292–1298

    Article  Google Scholar 

  • Upadhyaya HD, Gowda CLL, Pundir RPS, Reddy VG, Singh S (2006) Development of core subset of finger millet germplasm using geographical origin and data on 14 quantitative traits. Genet Resour Crop Evol 53:679–685

    Article  Google Scholar 

  • van Hintum TJL (1995) Hierarchical approaches to the analysis of genetic diversity in crop plants. In: Hodgkin T, Brown AHD, van Hintum TJL (eds) Core collections of plant genetic resources. Wiley, Chichester, pp 23–34

    Google Scholar 

  • van Hintum ThJL, van Treuren R (2002) Molecular markers: tools to improve genebank efficiency. Cell Mol Biol Lett 7:737–744

    PubMed  Google Scholar 

  • van Hintum ThJL, von Bothmer R, Visser DL (1995) Sampling strategies for composing a core collection of cultivated barley (Hordeum vulgare s. Iat.) collected in China. Hereditas 122:7–15

    Article  Google Scholar 

  • Varshney RK, Andreas GA, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    Article  CAS  PubMed  Google Scholar 

  • Wang JC, Hu J, Xu HM, Zhang S (2007) A strategy on constructing core collections by least distance stepwise sampling. Theor Appl Genet 115:1–8

    Article  CAS  PubMed  Google Scholar 

  • Yan WG, Ruter JN, Bryant RJ, Bockelman HE, Fjellstrom RG, Chen MH, Tai TH, McClung AM (2007) Development and evaluation of a core subset of the USDA rice germplasm collection. Crop Sci 47:869–876

    Article  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GK, Li S et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  CAS  PubMed  Google Scholar 

  • Zewdie Y, Tong NK, Bosland P (2004) Establishing a core collection of capsicum using a cluster analysis with enlightened selection of accessions. Genet Resour Crop Evol 51:147–151

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by Biogreen 21 project (Grant 20080401034058) of the Rural Development Administration (RDA) and a grant (Code 200803101010415) from the National Academy of Agricultural Science, RDA, Republic of Korea. This research was also supported by the 2008 KU Brain Pool of Konkuk University for Dr. Zhao Weiguo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jin Park.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, W., Cho, GT., Ma, KH. et al. Development of an allele-mining set in rice using a heuristic algorithm and SSR genotype data with least redundancy for the post-genomic era. Mol Breeding 26, 639–651 (2010). https://doi.org/10.1007/s11032-010-9400-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-010-9400-x

Keywords

Navigation