Skip to main content
Log in

Allele-specific expression of a weeping lovegrass gene from the lignin biosynthetic pathway, caffeoyl-coenzyme A 3-O-methyltransferase

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Eragrostis curvula is an important forage grass in marginal regions for its capacity to grow and develop in sandy, not very fertile soils and for its drought tolerance. However, its widespread use for animal production is limited at present since it has low forage quality. In forage species, lignin content has been recognized as one of the main factors that affects this parameter. The O-methylation at the C3 position of the phenolic ring of caffeic acid constitutes a key step in the lignin biosynthetic pathway. The enzyme caffeoyl-CoA 3-O-methyltransferase (CCoAOMT) catalyzes such methylation and is thus considered an interesting target for molecular breeding programs. Here we report the isolation of the full-length CCoAOMT cDNA from the E. curvula inflorescences library. Primers based on this sequence led to the amplification of seven unigenes from genomic DNA from cvs. Tanganyika, Don Pablo and Kromdraai. Since the major differences were located in the intron regions, these seven sequences resulted in four possible allelic forms. We further evaluated the allelic expression per tissue in cv. Tanganyika, the most variable genotype. The four alleles predicted by the genomic sequences were found to be expressed. Three of them were common to inflorescences, roots and leaves, while the other one seemed to be specific for inflorescences. The statistical analysis showed that the expression was not organ-independent. The information reported here constitutes a valuable tool for E. curvula breeding programs, aiming to alter lignin biosynthesis to improve forage quality without causing undesirable effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul SF, Boguski MS, Gish W et al (1994) Issues in searching molecular sequence databases. Nat Genet 6:119–129

    Article  CAS  PubMed  Google Scholar 

  • Buxton DR, Russell JR (1988) Lignin constituents and cell wall digestibility of grass and legume stems. Crop Sci 28:553–558

    Article  CAS  Google Scholar 

  • Campell W, Gowri G (1990) Codon usage in higher plants, green algae and cyanobacteria. Plant Physiol 92:1–11

    Article  Google Scholar 

  • Cervigni GD, Paniego N, Díaz M et al (2008) Expressed sequence tag analysis and development of gene associated markers in a near-isogenic plant system of Eragrostis curvula. Plant Mol Biol 67:1–10

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Meyermans H, Doorsselaere J et al (1998) A gene encoding caffeoyl coenzyme A 3-O-methyltransferase (CCoAOMT) from Populus trichocarpa (accession no. AJ223621) (PGR 98-104). Plant Physiol 117:719

    Google Scholar 

  • CIMMYT (2005) Laboratory protocols: CIMMYT applied molecular genetics laboratory, 3rd edn. CIMMYT, Mexico, DF

    Google Scholar 

  • De Melis LE, Whiteman PH, Stevenson TW (1999) Isolation and characterisation of a cDNA clone encoding cinnamyl alcohol dehydrogenase in Eucalyptus globulus Labill. Plant Sci 143:173–182

    Article  Google Scholar 

  • Do C, Pollet B, Théyenin J et al (2007) Both Caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta 226:1117–1129

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Ferrer JL, Zubieta C, Dixon RA et al (2005) Crystal structures of alfalfa caffeoyl CoA 3-O-methyltransferase. Plant Physiol 137:1009–1017

    Article  CAS  PubMed  Google Scholar 

  • Goujon T, Sibout R, Eudes A et al (2003) Genes involved in the biosynthesis of lignin precursors in Arabidopsis thaliana. Plant Physiol Biochem 41:677–687

    Article  CAS  Google Scholar 

  • Grimming B, Matern U (1997) Structure of the parsley caffeoyl-CoA O-methyltransferase gene, harbouring a novel elicitor responsive cis-acting element. Plant Mol Biol 33:323–341

    Article  Google Scholar 

  • Guillet-Claude C, Birolleau-Touchard C, Manicacci D et al (2004) Genetic diversity associated with variation in silage corn digestibility for three O-methyltransferase genes involved in lignin biosynthesis. Theor Appl Genet 110:126–135

    Article  CAS  PubMed  Google Scholar 

  • Guo D, Chen F, Inoue K et al (2001) Downregulation of caffeic acid 3-O-methyltransferase and caffeolyl-CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13:73–88

    Article  CAS  PubMed  Google Scholar 

  • Heath R, Huxley H, Stone B et al (1998) cDNA cloning and differential expression of three caffeic acid O-methyltransferase homologues from Perennial Ryegrass (Lolium perenne). J Plant Physiol 152:649–657

    Google Scholar 

  • Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877

    Article  CAS  PubMed  Google Scholar 

  • InfoStat (2006) Grupo InfoStat, FCA. Universidad Nacional de Córdoba, Argentina

    Google Scholar 

  • Inoue K, Sewalt WJH, Balance GM et al (1998) Developmental expression and substrate specificities of alfalfa caffeic acid 3-O-methyltransferase and caffeoyl coenzyme A 3-O-methyltransferase in relation to lignification. Plant Physiol 117:761–770

    Article  CAS  PubMed  Google Scholar 

  • Joshi CP, Chiang VL (1998) Conserved sequences motifs in plant S-adenosyl-L-methionine-dependent methyltransferases. Plant Mol Biol 37:663–674

    Article  CAS  PubMed  Google Scholar 

  • Larsen K (2004) Cloning characterization of a ryegrass (Lolium perenne) gene encoding cinnamoyl-CoA reductase (CCR). Plant Sci 166:569–581

    Article  CAS  Google Scholar 

  • Lepelley M, Cheminade G, Tremillon N et al (2007) Chlorogenic acid synthesis in coffee: an analysis of CGA content and real-time RT-PCR expression of HCT, HQT, C3H1, and CCoAOMT1 genes during grain development in C. canephora. Plant Sci 172:978–996

    Article  CAS  Google Scholar 

  • Lu J, Zhao H, Wei J et al (2004) Lignin reduction in transgenic poplars by expressing antisense CCoAOMT gene. Prog Nat Sci 14:1060–1063

    Article  CAS  Google Scholar 

  • Marita J, Ralph J, Hatfield R et al (2003) Structural and compositional modifications in lignin of transgenic alfalfa down-regulation in caffeic acid 3-O-methyltransferase and caffeoyl coenzyme A 3-O-methyltransferase. Phytochemistry 62:53–65

    Article  CAS  PubMed  Google Scholar 

  • Martz F, Maury S, Pinçon G et al (1998) cDNA cloning, substrate specificity and expression study of tobacco caffeoyl-CoA 3-O-methyltransferase, a lignin biosynthetic enzyme. Plant Mol Biol 36:427–437

    Article  CAS  PubMed  Google Scholar 

  • Meyermans H, Morreel K, Lapierre C (2000) Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl -coenzyme A O-methyltransferase, an enzyme involved in lignin biosynthesis. J Biol Chem 47:36899–36909

    Article  Google Scholar 

  • Osakabe Y, Ohtsubo Y, Kawai S (1995) Structure and tissue-specific expression of genes for phenylalanine ammonia-lyase from a hybrid aspen, Populus kitakamiensis. Plant Sci 105:217–226

    Article  CAS  Google Scholar 

  • Pinçon G, Maury S, Hoffmann L et al (2001) Repression of O-methyltransferase genes in transgenic tobacco affects lignin synthesis and plant growth. Phytochemistry 57:1167–1176

    Article  PubMed  Google Scholar 

  • Rastogi S, Dwivedi U (2008) Manipulation of lignin in plants with special reference to O-methyltransferase. Plant Sci 174:264–277

    Article  CAS  Google Scholar 

  • Robinson AJ, Love CG, Batley J et al (2004) Simple sequence repeat marker loci discovery using SSR primer. Bioinformatics 20:1475–1476

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Streetman L (1963) Reproduction of the lovegrasses, the genus Eragrostis: Eragrostis chloromelas Stend., E. curvua (Schrad.) Nees., E. leshmanniana Nees. and E. superba Peyr. Wrightia. Am J Bot 3:41–51

    Google Scholar 

  • Takezaki N, Rzhetsky A, Nei M (2004) Phylogenetic test of the molecular clock and linearized trees. Mol Biol Evol 12:823–833

    Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tsuruta S, Ebina M, Nakagawa H et al (2007) Isolation and characterization of cDNA encoding cinnamyl alcohol dehudrogenase (CAD) in sorghum (Sorghum bicolor (L.) Moench). Grassland Sci 53:103–109

    Article  CAS  Google Scholar 

  • Vogel K, Jung H (2001) Genetic modification of herbaceous plants for feed and fuel. Crit Rev Plant Sci 20:15–49

    Google Scholar 

  • Ye Z, Kneusel R, Matern U et al (1994) An alternative methylation pathway in lignin biosynthesis in Zinnia. Plant Cell 6:1427–1439

    Article  CAS  PubMed  Google Scholar 

  • Ye ZH, Zhong R, Morrison WH et al (2001) Caffeoyl coenzyme A O-methyltransferase and lignin biosynthesis. Phytochemistry 57:1177–1185

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Sheng Q, Lü S (2004) Characterization of three rice CCoAOMT genes. Chin Sci Bull 49:1602–1606

    CAS  Google Scholar 

  • Zhong R, Morrison H, Negrel J et al (1998) Dual methylation pathways in lignin biosynthesis. Plant Cell 10:2033–2045

    Article  CAS  PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, New York, pp 97–166

    Google Scholar 

Download references

Acknowledgments

We warmly acknowledge Natalia Moirano for performing the Southern Blotting, and Dr Alicia Carrera for helpful discussion. This work was funded by the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, PICT 14624 and PAV 137) and Secretaría de Ciencia y Técnica (SECyT -UNS, PGI 24/A133), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viviana Echenique.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz, M.L., Garbus, I. & Echenique, V. Allele-specific expression of a weeping lovegrass gene from the lignin biosynthetic pathway, caffeoyl-coenzyme A 3-O-methyltransferase. Mol Breeding 26, 627–637 (2010). https://doi.org/10.1007/s11032-010-9399-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-010-9399-z

Keywords

Navigation