Skip to main content
Log in

Association mapping of leaf rust response in durum wheat

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Resistance to leaf rust (Puccinia triticina Eriks.) is a main objective for durum wheat (Triticum durum Desf.) breeding. Association mapping on germplasm collections is now being used as an additional approach for the discovery and validation of major genes/QTLs. In this study, a collection of 164 elite durum wheat accessions suitable for association mapping has been tested for leaf rust response at the seedling stage and under field conditions (adult plant stage). Seedling tests were carried out with 25 selected isolates from durum wheat, bread wheat and triticale, while field experiments were carried out in artificially inoculated plots in Italy and in Mexico. The collection has been profiled with 225 simple sequence repeat (SSR) loci of known map position and a PCR assay targeting Ppd-A1. Associations showing highly consistent experiment-wise significances across leaf rust isolates and field trials were mainly detected for the 7BL distal chromosome (chr.) region (harbouring Lr14 from cultivar Llareta INIA and QLr.ubo-7B.2 from cultivar Creso) and for two chr. regions located in chrs. 2A and 2B. Additionally, isolate-specific associations and/or associations with smaller effects in the field trials were identified in most of the chromosomes. The chr. 7BL distal region was investigated in detail through haplotyping with 15 SSR markers, revealing that the Creso and Llareta INIA alleles are identical by descent at 6 adjacent SSR loci in the most distal 7BL region spanning 8 cM. Association mapping allowed us to further refine the map location of the Lr14/QLr.ubo-7B.2 resistance gene to the most distal region of the linkage group, tagged by Xcfa2257.2, Xgwm344.2 and Xwmc10. The resistant haplotype is present in a number of accessions (ca. 15% of the accessions included in the collection) from the Italian, CIMMYT and ICARDA breeding programmes. Therefore, this chr. 7BL region can be considered as the most important source of resistance to leaf rust currently exploited by durum breeders in the Mediterranean areas. Furthermore, the field trials at the adult plant stage allowed us to identify marker associations (e.g. chrs. 2BL and 3BS, proximal regions; chr. 7BS, distal region) which suggest the presence of minor QTLs for slow-rusting resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar-Rincon VH, Singh RP, Castillo-Gonzalez F, Huerta-Espino J (2001) Genes of leaf rust resistance in a synthetic hexaploid wheat. Rev Fitotec Mex 24:161–169

    Google Scholar 

  • Akhunov E, Nicolet C, Dvorak J (2009) Single nucleotide polymorphism genotyping in polyploidy wheat with the Illumina GoldenGate assay. Theor Appl Genet 119:507–517

    Article  CAS  PubMed  Google Scholar 

  • Amaro LAM, Mir SGL, Huerta-Espino J, Mir EV (2007) Genetics of leaf rust resistence (Puccinia triticina E.) in elite durum wheat lines. Rev Fitotec Mex 30:33–38

    Google Scholar 

  • Bansal UK, Hayden MJ, Venkata BP, Khanna R, Saini RG, Bariana HS (2008) Genetic mapping of adult plant leaf rust resistance genes Lr48 and Lr49 in common wheat. Theor Appl Genet 117:307–312

    Article  CAS  PubMed  Google Scholar 

  • Belaid A (2000) Durum wheat in WANA (West Asia and North Africa): production, trade, and gains from technological change. In: Royo C, Nachit MM, Di Fonzo N, Araus JL (eds) Durum wheat improvement in the Mediterranean region: new challenges, vol 40. Options Méditerranéennes. CIHEAM-IAMZ, Zaragoza, pp 35–39

    Google Scholar 

  • Beló A, Zheng PZ, Luck S, Shen B, Meyer DJ, Li BL, Tingey S, Rafalski A (2008) Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics 279:1–10

    Article  PubMed  CAS  Google Scholar 

  • Bolton MD, Kolmer JA, Garvin DF (2008) Wheat leaf rust caused by Puccinia triticina. Mol Plant Pathol 9:563–575

    Article  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Breseghello F, Sorrells ME (2006a) Association analysis as a strategy for improvement of quantitative traits in plants. Crop Sci 46:1323–1330

    Article  Google Scholar 

  • Breseghello F, Sorrells ME (2006b) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Calus MPL, Meuwissen THE, Windig JJ, Knol EF, Schrooten C, Vereijken ALJ, Veerkamp RF (2009) Effects of the number of markers per haplotype and clustering of haplotypes on the accuracy of QTL mapping and prediction of genomic breeding values. Genet Sel Evol 41:11

    Article  PubMed  CAS  Google Scholar 

  • Chao SM, Zhang WJ, Dubcovsky J, Sorrells M (2007) Evaluation of genetic diversity and genome-wide linkage disequilibrium among US wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Sci 47:1018–1030

    Article  CAS  Google Scholar 

  • Cockram J, White J, Leigh FJ, Lea VJ, Chiapparino E, Laurie DA, Mackay IJ, Powell W, O’Sullivan DM (2008) Association mapping of partitioning loci in barley. BMC Genet 9:16

    Article  PubMed  CAS  Google Scholar 

  • Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  CAS  PubMed  Google Scholar 

  • Flint-Garcia SA, Thuillet AC, Yu JM, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44:1054–1064

    Article  CAS  PubMed  Google Scholar 

  • Ganal MW, Röder MS (2007) Microsatellite and SNP markers in wheat breeding. In: Varshney R, Tuberosa R (eds) Genomic assisted crop improvement: vol 2: genomics applications in crops. Springer, Dordrecht, pp 1–24

    Chapter  Google Scholar 

  • Gennaro A, Koebner RMD, Ceoloni C (2009) A candidate for Lr19, an exotic gene conditioning leaf rust resistance in wheat. Funct Integr Genomic 9:325–334

    Article  CAS  Google Scholar 

  • Giunta F, Motzo R, Pruneddu G (2007) Trends since 1900 in the yield potential of Italian-bred durum wheat cultivars. Eur J Agron 27:12–24

    Article  Google Scholar 

  • Grapes L, Firat MZ, Dekkers JC, Rothschild MF, Fernando RL (2006) Optimal haplotype structure for linkage disequilibrium-based fine mapping of quantitative trait loci using identity by descent. Genetics 172:1955–1965

    Article  CAS  PubMed  Google Scholar 

  • Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485

    Article  CAS  PubMed  Google Scholar 

  • Habash DZ, Kehel Z, Nachit M (2009) Genomic approaches for designing durum wheat ready for climate change with a focus on drought. J Exp Bot 60:2805–2815

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Foessel SA, Singh RP, Huerta-Espino J, Yuen J, Djurle A (2005) New genes for leaf rust resistance in CIMMYT durum wheats. Plant Dis 89:809–814

    Article  CAS  Google Scholar 

  • Herrera-Foessel SA, Singh RP, Huerta-Espino J, Crossa J, Yuen J, Djurle A (2006) Effect of leaf rust on grain yield and yield traits of durum wheats with race-specific and slow-rusting resistance to leaf rust. Plant Dis 90:1065–1072

    Article  Google Scholar 

  • Herrera-Foessel SA, Singh RP, Huerta-Espino J, Crossa J, Djurle A, Yuen J (2007a) Evaluation of slow rusting resistance components to leaf rust in CIMMYT durum wheats. Euphytica 155:361–369

    Article  Google Scholar 

  • Herrera-Foessel SA, Singh RP, Huerta-Espino J, William HM, Rosewarne G, Djurle A, Yuen J (2007b) Identification and mapping of Lr3 and a linked leaf rust resistance gene in durum wheat. Crop Sci 47:1459–1466

    Article  CAS  Google Scholar 

  • Herrera-Foessel SA, Djurle A, Yuen J, Singh RP, William HM, Garcia V, Huerta-Espino J (2008a) Identification and molecular characterization of leaf rust resistance gene Lr14a in durum wheat. Plant Dis 92:469–473

    Article  CAS  Google Scholar 

  • Herrera-Foessel SA, Singh RP, Huerta-Espino J, William HM, Djurle A, Yuen J (2008b) Molecular mapping of a leaf rust resistance gene on the short arm of chromosome 6B of durum wheat. Plant Dis 92:1650–1654

    Article  CAS  Google Scholar 

  • Herrera-Foessel SA, Singh RP, Huerta-Espino J, William HM, Djurle A, Yuen J (2008c) Genetic analysis of slow-rusting resistance to leaf rust in durum wheat. Crop Sci 48:2132–2140

    Article  Google Scholar 

  • Holland J (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10:156–161

    Article  CAS  PubMed  Google Scholar 

  • Hospital F, Charcosset A (1997) Marker-assisted introgression of quantitative trait loci. Genetics 147:1469–1485

    CAS  PubMed  Google Scholar 

  • Kaur N, Street K, Mackay M, Yahiaoui N, Keller B (2008) Molecular approaches for characterization and use of natural disease resistance in wheat. Eur J Plant Pathol 121:387–397

    Article  CAS  Google Scholar 

  • Keller B, Feuillet C, Yahiaoui N (2005) Map-based isolation of disease resistance genes from bread wheat: cloning in a supersize genome. Genet Res 85:93–100

    Article  CAS  PubMed  Google Scholar 

  • Keller B, Bieri S, Bossolini E, Yahiaoui N (2007) Cloning genes and QTLs for disease resistance in cereals. In: Varshney R, Tuberosa R (eds) Genomic assisted crop improvement: vol 2: genomics applications in crops. Springer, Dordrecht, pp 103–127

    Chapter  Google Scholar 

  • Kim Y, Duggal P, Gillanders EM, Kim H, Bailey-Wilson JE (2008) Examining the effect of linkage disequilibrium between markers on the Type I error rate and power of nonparametric multipoint linkage analysis of two-generation and multigenerational pedigrees in the presence of missing genotype data. Genet Epidemiol 32:41–51

    Article  PubMed  Google Scholar 

  • Knott DR, Bai DP, Zale J (2005) The transfer of leaf and stem rust resistance from wild emmer wheats to durum and common wheat. Can J Plant Sci 85:49–57

    Google Scholar 

  • Kolmer JA (1996) Genetics of resistance to wheat leaf rust. Annu Rev Phytopathol 34:435–455

    Article  CAS  PubMed  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Long DL, Kolmer JA (1989) A North American system of nomenclature for Puccinia recondita f. sp. tritici. Phytopathology 79:525–529

    Article  Google Scholar 

  • Maccaferri M, Sanguineti MC, Donini P, Tuberosa R (2003) Microsatellite analysis reveals a progressive widening of the genetic basis in the elite durum wheat germplasm. Theor Appl Genet 107:783–797

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri M, Sanguineti MC, Noli E, Tuberosa R (2005) Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed 15:271–289

    Article  CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Natoli V, Ortega JLA, Ben Salem M, Bort J, Chenenaoui C, De Ambrogio E, del Moral LG, De Montis A, El-Ahmed A, Maalouf F, Machlab H, Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou H, Royo C, Tuberosa R (2006) A panel of elite accessions of durum wheat (Triticum durum Desf.) suitable for association mapping studies. Plant Gen Res 4:79–85

    Article  CAS  Google Scholar 

  • Maccaferri M, Sanguineti MC, Xie C, Smith JS, Tuberosa R (2007) Relationships among durum wheat accessions. II. A comparison of molecular and pedigree information. Genome 50:385–399

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri M, Mantovani P, Tuberosa R, DeAmbrogio E, Giuliani S, Demontis A, Massi A, Sanguineti MC (2008a) A major QTL for durable leaf rust resistance widely exploited in durum wheat breeding programs maps on the distal region of chromosome arm 7BL. Theor Appl Genet 117:1225–1240

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri M, Sanguineti MC, Corneti S, Ortega JLA, Ben Salem M, Bort J, DeAmbrogio E, del Moral LFG, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Martos V, Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou H, Royo C, Slama A, Tuberosa R (2008b) Quantitative trait loci for grain yield and adaptation of durum wheat (Triticum durum Desf.) across a wide range of water availability. Genetics 178:489–511

    Article  PubMed  Google Scholar 

  • Maccaferri M, Sanguineti MC, del Moral LFG, Demontis A, El-Ahmed A, Maalouf F, Machlab H, Martos V, Moragues M, Motawaj J, Nachit M, Nserallah N, Ouabbou H, Royo C, Slama A, Tuberosa R (2009) Association mapping in durum wheat grown across a broad range of water regimes and yield potential. Genetics (submitted)

  • Malosetti M, van der Linden CG, Vosman B, van Eeuwijk FA (2007) A mixed-model approach to association mapping using pedigree information with an illustration of resistance to Phytophthora infestans in potato. Genetics 175:879–889

    Article  CAS  PubMed  Google Scholar 

  • Mantovani P (2009) Identificazione di un QTL principale per resistenza a ruggine bruna sul cromosoma 7B di frumento duro. Ph. D. thesis, University of Bologna

  • Mantovani P, Maccaferri M, Sanguineti MC, Tuberosa R, Catizone I, Wenzl P, Thomson B, Carling J, Eric H, DeAmbrogio E, Kilian A (2008) An integrated DArT-SSR linkage map of durum wheat. Mol Breed 22:629–648

    Article  CAS  Google Scholar 

  • Mantovani P, Maccaferri M, Tuberosa R, Kolmer J (2009) Virulence phenotypes and molecular genotypes of Puccinia triticina isolates from Italy. Plant Dis (accepted)

  • Marone D, Del Olmo AI, Laido G, Sillero JC, Emeran AA, Russo MA, Ferragonio P, Giovanniello V, Mazzucotelli E, De Leonardis AM, De Vita P, Blanco A, Cattivelli L, Rubiales D, Mastrangelo AM (2009) Genetic analysis of durable resistance against leaf rust in durum wheat. Mol Breed 24:25–39

    Article  CAS  Google Scholar 

  • Martinez F, Sillero JC, Rubiales D (2005) Pathogenic specialization of Puccinia triticina in Andalusia from 1998 to 2000. J Phytopathol 153:344–349

    Article  CAS  Google Scholar 

  • Martinez F, Sillero JC, Rubiales D (2007) Resistance to leaf rust in cultivars of bread wheat and durum wheat grown in Spain. Plant Breed 126:13–18

    Article  Google Scholar 

  • McIntosh RA (2009) History and status of the wheat rusts. In: Proceedings of the 2009 Technical Workshop Borlaug Global Rust Initiative, Cd. Obregon, Sonora, Mexico, March 17–20, pp 1–16

  • McIntosh RA, Dyck PL (1975) Cytogenetical studies in wheat. VII. Gene Lr23 for reaction to Puccinia recondita in Gabo and related cultivars. Austr J Biol Sci 28:201–211

    Google Scholar 

  • McIntosh RA, Park RF, Wellings CR (1995) Wheat rusts: an atlas of resistance genes. CSIRO Press, East Melbourne, Australia

    Google Scholar 

  • McIntosh RA, Devos KM, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Somers DJ, Anderson OA (2008) Catalogue of gene symbols for wheat: 2008 supplement. Available at http://wheat.pw.usda.gov/ggpages/wgc/2008upd.pdf

  • Meuwissen THE, Goddard ME (2000) Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci. Genetics 155:421–430

    CAS  PubMed  Google Scholar 

  • Morancho J (1995) World durum wheat trade. In: Di Fonzo N, Kaan F, Nachit M (eds) Durum wheat quality in the Mediterranean region, vol 22. Options Méditerranéennes. CIHEAM-IAMZ, Zaragoza, pp 213–219

    Google Scholar 

  • Nachit MM (2000) ICARDA germplasm program. Annual report for 2000. Durum wheat germplasm improvement for increased productivity, yield stability and grain quality in West Asia and North Africa (Project 1.2). pp 125–152

  • Nelson JC, Singh RP, Autrique JE, Sorrells ME (1997) Mapping genes conferring and suppressing leaf rust resistance in wheat. Crop Sci 37:1928–1935

    CAS  Google Scholar 

  • Nsarellah N, Lhaloui S, Nachit M (2000) Breeding durum wheat for biotic stresses in the Mediterranean region. In: Royo C, Nachit MM, Di Fonzo N, Araus JL (eds) Durum wheat improvement in the Mediterranean region: new challenges, vol 40. Options Méditerranéennes. CIHEAM-IAMZ, Zaragoza, pp 341–347

    Google Scholar 

  • Ordoñez ME, Kolmer JA (2007) Virulence phenotypes of a world-wide collection of Puccinia triicina from durum wheat. Phytopathology 97:344–351

    Article  PubMed  CAS  Google Scholar 

  • Pasquini M, Casulli F (1993) Resistenza “durevole” a Puccinia recondita f. sp. tritici ed Erysiphe graminis f. sp. tritici in frumenti duri italiani. Phytopathol Mediterr 32:135–142

    Google Scholar 

  • Peleman JD, van der Voort JR (2003) Breeding by design. Trends Plant Sci 8:330–334

    Article  CAS  PubMed  Google Scholar 

  • Peterson RF, Campbell AB, Hannah AE (1948) A diagrammatic scale for estimating rust intensity of leaves and stem of cereals. Can J Res Sect C 26:496–500

    Google Scholar 

  • Pritchard JK, Rosenberg NA (1999) Use of unlinked genetic markers to detect population stratification in association studies. Am J Hum Genet 65:220–228

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Qiu D, Mao J, Yang X, Zeng H (2009) Expression of an elicitor-encoding gene from Magnaporthe grisea enhances resistance against blast disease in transgenic rice. Plant Cell Rep 28:925–933

    Article  CAS  PubMed  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  CAS  PubMed  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF, Graner A, Close TJ, Waugh R (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA 103:18656–18661

    Article  CAS  PubMed  Google Scholar 

  • Saghai Maroof MA, Solima KM, Jorgenson RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 8:8014–8018

    Article  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10:297–304

    Article  CAS  PubMed  Google Scholar 

  • Schrag TA, Möhring J, Maurer HP, Dhillon BS, Melchinger AE, Piepho HP, Sørensen AP, Frisch M (2009) Molecular marker-based prediction of hybrid performance in maize using unbalanced data from multiple experiments with factorial crosses. Theor Appl Genet 118:741–751

    Article  CAS  PubMed  Google Scholar 

  • Seyfarth R, Feuillet C, Schachermayr G, Messmer M, Winzeler M, Keller B (2000) Molecular mapping of the adult-plant leaf rust resistance gene Lr13 in wheat (Triticum aestivum L.). J Genet Breed 54:193–198

    CAS  Google Scholar 

  • Shaner G, Finney RE (1977) The effect of nitrogen fertilization on the expression of slow-mildewing resistance in Knox wheat. Phytopathology 67:1051–1056

    Article  CAS  Google Scholar 

  • Singh H, Dhaliwal HS, Gill KS (1992) Diversity for leaf rust resistance in Triticum durum germplasm. Cereal Rusts Powdery Mildews Bull 20:62–67

    Google Scholar 

  • Singh RP, Huerta-Espino J, Pfeiffer W, Figueroa-Lopez P (2004) Occurrence and impact of a new leaf rust race on durum wheat in northwestern Mexico from 2001 to 2003. Plant Dis 88:703–708

    Article  Google Scholar 

  • Singh RP, Huerta-Espino J, Fuentes G, Duveiller E, Gilchrist L, Henry M, Nicol MJ (2005) Resistance to diseases. In: Royo C, Nachit MM, Di Fonzo N, Araus JL, Pfeiffer WH, Slafer GA (eds) Durum wheat breeding: current approaches and future strategies. Food Product Press, Binghamton, pp 291–315

    Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  CAS  PubMed  Google Scholar 

  • Somers DJ, Banks T, DePauw R, Fox S, Clarke J, Pozniak C, McCartney C (2007) Genome-wide linkage disequilibrium analysis in bread wheat and durum wheat. Genome 50:557–567

    Article  CAS  PubMed  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JOINMAP. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2006) JoinMap version 4.0: software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Varshney RK, Tuberosa R (2007) Genomics-assisted crop improvement, vol 1: genomics approaches and platforms. Springer, Dordrecht

    Google Scholar 

  • Varshney RK, Langridge P, Graner A (2007) Application of genomics to molecular breeding of wheat and barley. Adv Genet 58:121–155

    Article  CAS  PubMed  Google Scholar 

  • Villumsen TM, Janss L, Lund MS (2009) The importance of haplotype length and heritability using genomic selection in dairy cattle. J Anim Breed Genet 126:3–13

    Article  CAS  PubMed  Google Scholar 

  • Waugh R, Jannink JL, Muehlbauer GJ, Ramsay L (2009) The emergence of whole genome association scans in barley. Curr Opin Plant Biol 12:218–222

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm EP, Turner AS, Laurie DA (2009) Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.). Theor Appl Genet 118:285–294

    Article  CAS  PubMed  Google Scholar 

  • Yu JM, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Knott DR (1990) Inheritance of leaf rust resistance in durum wheat. Crop Sci 30:1218–1222

    Article  Google Scholar 

  • Zhang H, Knott DR (1993) Inheritance of adult plant resistance to leaf rust in six durum wheat cultivars. Crop Sci 33:694–697

    Google Scholar 

Download references

Acknowledgments

Research carried out with the financial contribution of the European Union (BIOEXPLOIT project) and of the Emilia-Romagna Region (CEREALAB-SITEIA project). The contribution of the EU-funded IDuWUE project and the IDuWUE Research Consortium in providing part of the tested materials and microsatellite markers is gratefully acknowledged. The technical assistance of Sandra Stefanelli is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria C. Sanguineti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maccaferri, M., Sanguineti, M.C., Mantovani, P. et al. Association mapping of leaf rust response in durum wheat. Mol Breeding 26, 189–228 (2010). https://doi.org/10.1007/s11032-009-9353-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-009-9353-0

Keywords

Navigation