Molecular Breeding

, Volume 24, Issue 4, pp 397–408 | Cite as

Chromosome engineering in wheat to restore male fertility in the msH1 CMS system

  • Azahara C. Martín
  • Sergio G. Atienza
  • María C. Ramírez
  • Francisco Barro
  • Antonio Martín


Pollen fertility restoration of the CMS phenotype caused by H. chilense cytoplasm in wheat was associated with the addition of chromosome 6HchS from H. chilense accession H1. In order to develop an euploid restored line, different genomic combinations substituting the 6HchS arm for another homoeologous chromosome in wheat were evaluated, with the conclusion that the optimal combination was the translocation T6HchS·6DL. The double translocation T6HchS·6DL in H. chilense cytoplasm was obtained. This line is fertile and stable under different environmental conditions. However, a single dose of the T6HchS·6DL translocation is insufficient for fertility restoration when chromosome 6D is also present. Restoration in the msH1 system is promoted by interaction between two or more genes, and in addition to the restorer of fertility (Rf) located on chromosome 6HchS, one or more inhibitor of fertility (Fi) genes may be present in chromosome 6DL.


CMS Fertility restoration Hordeum chilense Wheat Chromosome engineering 



We thank Dr. P. Lazzeri (Agrasys S.L.) for revision and correction of the English in this manuscript. This work was supported by MICINN (Ministerio de Ciencia e Innovación) projects AGL2006-07703 and AGL2007-65685-C02-01 of the Spanish Government.


  1. Atienza SG, Ramírez MC, Hernández P, Martín A (2004) Chromosomal location of genes for carotenoid pigments in Hordeum chilense. Plant Breed 123:303–304. doi: 10.1111/j.1439-0523.2004.00918.x CrossRefGoogle Scholar
  2. Atienza SG, Avila CM, Martín A (2007a) The development of a PCR-based marker for PSY1 from Hordeum chilense, a candidate gene for carotenoid content accumulation in tritordeum seeds. Aust J Agric Res 58(8):767–773. doi: 10.1071/AR06338 CrossRefGoogle Scholar
  3. Atienza SG, Ballesteros J, Martín A, Hornero-Mández D (2007b) Genetic variability of carotenoid concentration and degree of esterification among tritordeum (Tritordeum Ascherson et Graebner) and durum wheat accessions. J Agric Food Chem 55:4244–4251. doi: 10.1021/jf070342p CrossRefPubMedGoogle Scholar
  4. Atienza SG, Martín AC, Ramírez MC, Martín A, Ballesteros J (2007c) Effects of Hordeum chilense cytoplasm on agronomic traits in common wheat. Plant Breed 126:5–8. doi: 10.1111/j.1439-0523.2007.01319.x CrossRefGoogle Scholar
  5. Börner A, Korzum V, Polley A, Malyshew S, Melz G (1998) Genetics and molecular mapping of a male fertility restoration locus (Rfg1) in rye (Secale cereale L.). Theor Appl Genet 97:99–102. doi: 10.1007/s001220050871 CrossRefGoogle Scholar
  6. Bothmer RV, Jacobsen N (1986) Interspecific crosses in Hordeum (Poaceae). Plant Syst Evol 153:49–64. doi: 10.1007/BF00989417 CrossRefGoogle Scholar
  7. Cabrera A, Friebe B, Jiang J, Gill BS (1995) Characterization of Hordeum chilense chromosomes by C-banding and in situ hybridization using highly repeated DNA probes. Genome 38:435–442PubMedGoogle Scholar
  8. Cabrera A, Martín A, Barro F (2002) In situ comparative mapping (ISCM) of Glu-1 loci in Triticum and Hordeum. Chromosome Res 10(1):49–54. doi: 10.1023/A:1014270227360 CrossRefPubMedGoogle Scholar
  9. Chen QF, Zhang QQ (1994) Improvement of Q-type cytoplasmic male-sterile lines and their restorers. Seeds 1:3–5Google Scholar
  10. Chung S-M, Staub JE (2003) The development and evaluation of consensus chloroplast primer pairs that possess highly variable sequence regions in a diverse array of plant taxa. Theor Appl Genet 107:757–767. doi: 10.1007/s00122-003-1311-3 CrossRefPubMedGoogle Scholar
  11. Davies PA, Pallotta MA, Driscoll CJ (1985) Centric fusion between nonhomologous rye chromosomes in wheat. Can J Genet Cytol 27:627–632Google Scholar
  12. Doyle JJ, Doyle JH (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Google Scholar
  13. Du H, Maan SS (1992) Genetic analysis of male-fertility restoration in wheat: VII. A fertility-inhibiting gene. Crop Sci 32:1414–1420Google Scholar
  14. Du H, Maan SS, Hammond JJ (1991) Genetic analysis of male-fertility restoration in wheat: III. Effects of aneuploidy. Crop Sci 31:319–322Google Scholar
  15. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res 7:1869–1885CrossRefPubMedGoogle Scholar
  16. Hagras AA, Kishii M, Tanaka H, Sato K, Tsujimoto H (2005) Genomic differentiation of Hordeum chilense from H. vulgare as revealed by repetitive and EST sequences. Genes Genet Syst 80:147–159. doi: 10.1266/ggs.80.147 CrossRefPubMedGoogle Scholar
  17. Hattori N, Kitagawa K, Takumi S, Nakamura C (2002) Mitochondrial DNA heteroplasmy in wheat, Aegilops and their nucleus-cytoplasm hybrids. Genetics 160:1619–1630PubMedGoogle Scholar
  18. Ikeguchi S, Hasegawa A, Murai T, Tsunewaki T (1999) Basic studies on hybrid wheat breeding using the 1BL-1RS translocation chromosome/Aegilops kotschyi cytoplasm system 1. Development of male sterile and maintainer lines with discovery of a new fertility-restorer. Euphytica 109:33–42. doi: 10.1023/A:1003689100815 CrossRefGoogle Scholar
  19. Lukaszewski AJ (1994) Manipulation of the genome by chromosome breakage. In: Gill BS, Raupp WJ (eds) Proceedings, US-Japan symposium, classical and molecular cytogenetic analysis, March 1994, Manhattan, Kansas, USA, pp 136–139, 21–23Google Scholar
  20. Lukaszewski AJ (1997) Further manipulation by centric misdivision of the 1RS.1BL translocation in wheat. Euphytica 94:257–261. doi: 10.1023/A:1002916323085 CrossRefGoogle Scholar
  21. Lukaszewski AJ, Curtis CA (1993) Physical distribution of recombination in B-genome chromosomes of tetraploid wheat. Theor Appl Genet 86(1):121–127. doi: 10.1007/BF00223816 CrossRefGoogle Scholar
  22. Maan SS (1992) Genetic analysis of male-sterility restoration in wheat: IV. Fertile line without major Rf genes. Crop Sci 32:24–28CrossRefGoogle Scholar
  23. Maan SS, Lucken K (1967) Additional cytoplasmic male sterility-fertility restoration systems in Triticum. Wheat Inf Serv 23:6–9Google Scholar
  24. Maan SS, Lucken KA, Bravo JM (1984) Genetic analyses of male-fertility restoration in wheat I. Chromosome location of Rf genes. Crop Sci 24:17–20Google Scholar
  25. Martín A, Martínez C, Rubiales D, Ballesteros J (1996) Tritordeum: triticale’s new brother cereal. In: Güedes-Pinto H, Darvey N, Carnide VP (eds) Triticale: today and tomorrow. Kluwer, Dordrecht, pp 57–72Google Scholar
  26. Martín A, Martín LM, Cabrera A, Ramírez MC, Giménez MJ, Rubiales D, Hernández P, Ballesteros J (1998) The potential of Hordeum chilense in breeding Triticeae species. In: Jaradat AA (ed) Triticeae III. Science, Enfield, pp 377–386Google Scholar
  27. Martín AC, Atienza S, Ramírez M, Barro F, Martín A (2008a) Male fertility restoration of wheat in Hordeum chilense cytoplasm is associated with 6HchS chromosome addition. Aust J Agric Res 59:206–213. doi: 10.1071/AR07239 CrossRefGoogle Scholar
  28. Martín AC, Atienza SG, Barro F (2008b) Use of ccSSR markers for the determination of the purity of alloplasmic wheat in different Hordeum cytoplasms. Plant Breed 127:470–475. doi: 10.1111/j.1439-0523.2007.01483.x CrossRefGoogle Scholar
  29. Mcintosh RA, Yamazaki Y, Devos KM, Dubcovsky J, Rogers WJ, Appels R (2003) Catalogue of gene symbols for wheat. In: Proceedings of 10th international wheat genetics symposium. Paestum, Italy, p 4Google Scholar
  30. Murai K (2001) Factors responsible for levels of male sterility in photoperiod-sensitive cytoplasmic male sterile (PCMS) wheat lines. Euphytica 117:111–116. doi: 10.1023/A:1004031304997 CrossRefGoogle Scholar
  31. Murai K (2002) Comparison of two fertility restoration systems against photoperiod-sensitive cytoplasmic male sterility in wheat. Plant Breed 121:363–365. doi: 10.1046/j.1439-0523.2002.720110.x CrossRefGoogle Scholar
  32. Nasuda S, Kikkawa Y, Ashida T, Rafiqul AKM, Sato K, Endo TR (2005) Chromosomal assignment and deletion mapping of barley EST markers. Genes Genet Syst 80:357–366. doi: 10.1266/ggs.80.357 CrossRefPubMedGoogle Scholar
  33. Padilla JA, Martín A (1983) Morphology and cytology of Hordeum chilense X Hordeum bulbosum hybrids. Theor Appl Genet 65(4):353–355. doi: 10.1007/BF00276577 CrossRefGoogle Scholar
  34. Pestsova EG, Ganal MV, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697. doi: 10.1139/gen-43-4-689 CrossRefPubMedGoogle Scholar
  35. Prieto P, Ramírez MC, Ballesteros J, Cabrera A (2001) Identification of intergenomic translocations involving wheat, Hordeum vulgare and Hordeum chilense chromosomes by FISH. Hereditas 135:171–174. doi: 10.1111/j.1601-5223.2001.t01-1-00171.x CrossRefPubMedGoogle Scholar
  36. Raupp WJ, Friebe B, Gill BS (1995) Suggested guidelines for the nomenclature and abbreviation of the genetic stocks of wheat and its relatives. Wheat Inf Serv 81:50–55Google Scholar
  37. Robertson WRB (1916) Chromosome studies. I. Taxonomic relationships shown in the chromosomes of Tettigidae and Acrididae. V-shaped chromosomes and their significance in Acrididae, Locustidae and Gryllidae: chromosome and variation. J Morphol 27:179–331. doi: 10.1002/jmor.1050270202 CrossRefGoogle Scholar
  38. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MV (1998) A microsatellite map of wheat. Genetics 149:2007–2023PubMedGoogle Scholar
  39. Sage GCM (1976) Nucleo-cytoplasmic relationship in wheat. Adv Agron 28:265–298Google Scholar
  40. Sears ER (1952) Misdivision of univalents in common wheat. Chromosoma 4:535–550. doi: 10.1007/BF00325789 CrossRefPubMedGoogle Scholar
  41. Thomas HM, Pickering RA (1985) Comparisons of the hybrids Hordeum chilense X Hordeum vulgare, Hordeum chilense X Hordeum bulbosum, Hordeum chilense X Secale cereale and the amphidiploid of Hordeum chilense X Hordeum vulgare. Theor Appl Genet 69(5–6):519–522. doi: 10.1007/BF00251097 CrossRefGoogle Scholar
  42. Tsunewaki K (1980) Basic studies on hybrid wheat breeding utilizing the timopheevi cytoplasm and Rf3 gene—summary of the results. Seiken Ziho 29:40–56Google Scholar
  43. Tsunewaki K (1993) Genome-plasmon interaction in wheat. Jpn J Genet 68:1–34. doi: 10.1266/jjg.68.1 CrossRefGoogle Scholar
  44. Wilson JA (1984) Hybrid wheat breeding and commercial seed development. Plant Breed Rev 2:303–319Google Scholar
  45. Wilson P, Driscoll CJ (1983) Hybrid wheat. In: Frankel R (ed) Heterosis. Monographs on theoretical and applied genetics, vol 6. Springer, Berlin Heidelberg New York, pp 94–123Google Scholar
  46. Zhang LL, Zhang YJ (2001) A comparative study on wheat CMS lines with Aegilops juvenalis and Ae. kotschyi cytoplasm. J Hubei Agric Coll 21:193–195Google Scholar
  47. Zhang AM, Nie XL, Liu DC, Guo XL (2001) Advances of hybrid wheat breeding in China. Cereal Res Commun 29:343–350Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Azahara C. Martín
    • 1
  • Sergio G. Atienza
    • 1
  • María C. Ramírez
    • 1
  • Francisco Barro
    • 1
  • Antonio Martín
    • 1
  1. 1.Departamento de Mejora Genética VegetalInstituto de Agricultura Sostenible (C.S.I.C.)CórdobaSpain

Personalised recommendations