Molecular Breeding

, Volume 23, Issue 3, pp 501–521 | Cite as

QTL mapping of aroma compounds analysed by headspace solid-phase microextraction gas chromatography in the apple progeny ‘Discovery’ × ‘Prima’

  • F. Dunemann
  • D. Ulrich
  • A. Boudichevskaia
  • C. Grafe
  • W. E. Weber


Improving fruit quality of apple varieties is an important but complex breeding goal. Flavour is among the key factors of apple fruit quality but in spite of the analytical and biochemical knowledge about volatiles little is known about the genetic and molecular bases of apple aroma. The aim of this study was to use a saturated molecular linkage map of apple to identify QTLs for aroma compounds such as alcohols, esters and terpenes, but also for a number of unidentified volatile compounds (non-targeted analysis approach). Two parental genetic maps were constructed for the apple cultivars ‘Discovery’ and ‘Prima’ by using mainly AFLP and SSR markers. ‘Discovery’ and ‘Prima’ showed very different volatile patterns, and ‘Discovery’ mostly had the higher volatile concentrations in comparison with the Vf-scab resistant ‘Prima’ which has its origin in the small-fruited apple species Malus floribunda. About 50 putative QTLs for a total of 27 different apple fruit volatiles were detected through interval mapping by using genotypic data of 150 F1 individuals of the mapping population ‘C3’ together with phenotypic data obtained by head-space solid phase microextraction gas chromatography. QTLs for volatile compounds putatively involved in apple aroma were found on 12 out of the 17 apple chromosomes, but they were not evenly dispersed. QTLs were mainly clustered on linkage groups LG 2, 3 and 9. In a first attempt, a LOX (lipoxygenase) candidate gene, putatively involved in volatile metabolism, was mapped on LG 9, genetically associated with a cluster of QTLs for ester-type volatiles. Implications for aroma breeding in apple are discussed.


Malus Volatile Inheritance Linkage map Quantitative trait locus Candidate gene 



We would like to thank Astrid Sahre, Regina Gläss, Jürgen Egerer, Margitta Dießner and Kirsten Weiß for their excellent technical assistance.


  1. Aharoni A, Keizer LCP, Bouwmeester HJ, Sun Z, Alvarez-Huerta M, Harrie A, Verhoeven HA, Blaas J, van Houwelingen AMML, De Vos RCH, van der Voet H, Jansen RC, Guis M, Mol J, Davis RW, Schena M, van Tunen AJ, O’Connell AP (2000) Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell 12:647–661PubMedCrossRefGoogle Scholar
  2. Boudichevskaia A, Flachowsky H, Peil A, Fischer C, Dunemann F (2006) Development of a multiallelic SCAR marker for the scab resistance gene Vr1/Vh4/Vx from R12740–7A apple and its utility for molecular breeding. Tree Genet Genomes 2:186–195. doi: 10.1007/s11295-006-0043-3 CrossRefGoogle Scholar
  3. Calenge F, Durel CE (2006) Both stable and unstable QTLs for resistance to powdery mildew are detected in apple after four years of field assessments. Mol Breed 17:329–339. doi: 10.1007/s11032-006-9004-7 CrossRefGoogle Scholar
  4. Calenge F, Faure A, Goerre M, Gebhardt C, Van de Weg WE, Parisi L, Durel CE (2004) Quantitative trait loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology 94:370–379. doi: 10.1094/PHYTO.2004.94.4.370 PubMedCrossRefGoogle Scholar
  5. Carrasco B, Hancock JF, Beaudry RM, Retamales JB (2005) Chemical composition and inheritance patterns od aroma in Fragaria × ananassa and Fragaria virginiana progenies. HortScience 40:1649–1650Google Scholar
  6. Causse M, Saliba-Colombani V, Lesschaeve I, Buret M (2001) Genetic analysis of organoleptic quality in fresh market tomato II. Mapping QTLs for sensory attributes. Theor Appl Genet 102:273–283. doi: 10.1007/s001220051644 CrossRefGoogle Scholar
  7. Conner PJ, Brown SK, Weeden NF (1998) Molecular-marker analysis of quantitative traits for growth and development in juvenile apple trees. Theor Appl Genet 96:1027–1035. doi: 10.1007/s001220050835 CrossRefGoogle Scholar
  8. Davey MW, Kenis K, Keulemans J (2006) Genetic control of fruit vitamin C contents. Plant Physiol 142:343–351. doi: 10.1104/pp.106.083279 PubMedCrossRefGoogle Scholar
  9. Dixon J, Hewett EW (2000) Factors affecting apple aroma/flavour volatile concentration: a review. N Z J Crop Hortic Sci 28:155–173Google Scholar
  10. Doligez A, Audiot E, Baumes R, This P (2006) QTLs for muscat flavor and monoterpenic odorant content in grapevine (Vitis vinifera L.). Mol Breed 18:109–125. doi: 10.1007/s11032-006-9016-3 CrossRefGoogle Scholar
  11. Fellman JK, Miller TW, Mattinson DS, Mattheis JP (2000) Factors that influence biosynthesis of volatile flavor compounds in apple fruits. HortScience 35:1026–1033Google Scholar
  12. Forney CF, Kalt W, Jordan MA (2000) The composition of strawberry aroma is influenced by cultivar, maturity, and storage. HortScience 35:1022–1026Google Scholar
  13. Fuhrmann E, Grosch W (2002) Character impact odorants of the apple cultivars Elstar and Cox Orange. Nahrung/Food 46:187–193CrossRefGoogle Scholar
  14. Han Y, Gasic K, Korban SS (2007) Multiple-copy cluster-type organization and evolution of genes encoding O-methyltransferases in the apple. Genetics 176:2625–2635. doi: 10.1534/genetics.107.073650 PubMedCrossRefGoogle Scholar
  15. Kenis K, Keulemans J (2007) Study of tree achitecture of apple (Malus × domestica Borkh.) by QTL analysis of growth traits. Mol Breed 19:193–208. doi: 10.1007/s11032-006-9022-5 CrossRefGoogle Scholar
  16. Khan MA, Duffy B, Gessler C, Patocchi A (2006) QTL mapping of fire blight resistance in apple. Mol Breed 17:299–306. doi: 10.1007/s11032-006-9000-y CrossRefGoogle Scholar
  17. King GJ, Lynn JR, Dover CJ, Evans KM, Seymour GB (2001) Resolution of quantitative trait loci for mechanical measures accounting for genetic variation in fruit texture of apple (Malus pumila Mill.). Theor Appl Genet 102:1225–1237. doi: 10.1007/s001220000530 CrossRefGoogle Scholar
  18. Lespinasse Y, Durel CE, Parisi L, Laurens F, Chevalier M, Pinet C (2000) A European project: D.A.R.E.—Durable Apple Resistance in Europe. Acta Hortic 538:197–200Google Scholar
  19. Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, van de Weg WE, Gessler C (2002) Development and characterization of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10:217–241. doi: 10.1023/A:1020525906332 CrossRefGoogle Scholar
  20. Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003a) Mapping quantitative physiological traits in apple (Malus × domestica Borkh.). Plant Mol Biol 52:511–526. doi: 10.1023/A:1024886500979 PubMedCrossRefGoogle Scholar
  21. Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003b) Creating a saturated reference map for the apple (Malus × domestica Borkh.) genome. Theor Appl Genet 106:1497–1508PubMedGoogle Scholar
  22. Maarse H (ed) (1991) Volatile compounds in food and beverages. Marcel Dekker, New York, p 30Google Scholar
  23. Maliepaard C, Alston FH, Van Arkel G, Brown LM, Chevreau E, Dunemann F, Evans KM, Gardiner S, Guilford P, van Heusden AW, Janse J, Laurens F, Lynn JR, Manganaris AG, Den Nijs APM, Periam N, Rikkerink E, Roche P, Ryder C, Sansavini S, Schmidt H, Tartarini S, Verhaegh JJ, Vrielink-Van Ginkel M, King GJ (1998) Aligning male and female linkage maps of apple (Malus pumila Mill.) using multi-allelic markers. Theor Appl Genet 97:60–73. doi: 10.1007/s001220050867 CrossRefGoogle Scholar
  24. Myburg AA, Remington DM, O’Malley DM, Sederoff RR, Whetten RW (2001) High-throughput AFLP analysis using infrared dye-labeled primers and an automated DNA sequencer. Biotechniques 30:348–357PubMedGoogle Scholar
  25. N’Diaye A, Van de Weg WE, Kodde LP, Koller B, Dunemann F, Thiermann M, Tartarini S, Gennari F, Durel CE (2008) Construction of an integrated consensus map of the apple genome based on four mapping populations. Tree Genet Genomes 4:727–743. doi: 10.1007/s11295-008-0146-0 CrossRefGoogle Scholar
  26. Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk Y-K (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166. doi: 10.1104/pp.105.076208 PubMedCrossRefGoogle Scholar
  27. Olbricht K, Grafe C, Weiss K, Ulrich D (2008) Inheritance of aroma compounds in a model population of Fragaria × ananassa Duch. Plant Breed 127:87–93Google Scholar
  28. Paillard NMM (1990) The flavour of apples, pears and quinces. In: Morton ID, Macleod AJ (eds) The flavour of fruits. Elsevier, Amsterdam, pp 1–41Google Scholar
  29. Park S, Sugimoto N, Larson MD, Beaudry R, van Nocker S (2006) Identification of genes with potential roles in apple fruit development and biochemistry through large-scale statistical analysis of expressed sequence tags. Plant Physiol 141:811–824. doi: 10.1104/pp.106.080994 PubMedCrossRefGoogle Scholar
  30. Rozen S, Skaletsky HJ (2000) Primer 3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  31. Saliba-Colombani V, Causse M, Langlois D, Philouze J, Buret M (2001) Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits. Theor Appl Genet 102:259–272. doi: 10.1007/s001220051643 CrossRefGoogle Scholar
  32. Schaffer RJ, Ellen N, Friel EN, Souleyre EJF, Bolitho K, Thodey K, Ledger S, Bowen JH, Ma J-H, Nain B, Cohen D, Gleave AP, Crowhurst RN, Janssen BJ, Yao J-L, Newcomb RD (2007) A genomics approach reveals that aroma production in apple is controlled by ethylene predominantly at the final step in each biosynthetic pathway. Plant Physiol 144:1899–1912. doi: 10.1104/pp.106.093765 PubMedCrossRefGoogle Scholar
  33. Schulz I, Ulrich D, Fischer C (2003) Rapid differentiation of new apple cultivars by headspace solid-phase microextraction in combination with chemometrical data processing. Nahrung/Food 47:136–139CrossRefGoogle Scholar
  34. Silfverberg-Dilworth E, Matasci CL, van de Weg WE, van Kaauwen MPW, Walzer M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet Genomes 2:202–224. doi: 10.1007/s11295-006-0045-1 CrossRefGoogle Scholar
  35. Souleyre EJF, Greenwood DR, Friel EN, Karunairetnam S, Newcomb RD (2005) An alcohol acyl transferase from apple (cv. Royal Gala), MpAAT1, produces esters involved in apple fruit flavor. FEBS J 272:3132–3144. doi: 10.1111/j.1742-4658.2005.04732.x PubMedCrossRefGoogle Scholar
  36. Thiermann M (2002) Molekulare Charakterisierung dauerhafter, polygen vererbter Resistenzquellen für Apfelschorf und Apfelmehltau. Thesis, University of Bremen, GermanyGoogle Scholar
  37. Tiemann DM, Zeigler M, Schmelz EA, Taylor MG, Bliss P, Kirst M, Klee HJ (2006) Identification of loci affecting flavour volatile emissions in tomato fruits. J Exp Bot 57:887–896. doi: 10.1093/jxb/erj074 CrossRefGoogle Scholar
  38. Van Ooijen JW (1999) LOD significance thresholds for QTL analysis in experimental populations of diploid species. Heredity 83:613–624. doi: 10.1038/sj.hdy.6886230 PubMedCrossRefGoogle Scholar
  39. Van Ooijen JW (2004) MapQTL® 5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma B.V., WageningenGoogle Scholar
  40. Van Ooijen JW (2006) JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V., WageningenGoogle Scholar
  41. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. doi: 10.1093/nar/23.21.4407 PubMedCrossRefGoogle Scholar
  42. Willaert GA, Dirinck PJ, De Pooter HL, Schamp NN (1983) Objective measurement of aroma quality of Golden Delicious apples as a function of controlled-atmosphere storage time. J Agric Food Chem 31:809–813. doi: 10.1021/jf00118a033 CrossRefGoogle Scholar
  43. Williams AA, Knee M (1977) The flavour of Cox’s Orange Pippin apples and its variation with storage. Ann Appl Biol 87:127–131. doi: 10.1111/j.1744-7348.1977.tb00670.x CrossRefGoogle Scholar
  44. Young H, Gilbert JM, Murray SH, Ball RD (1996) Causal effects of aroma compounds on Royal Gala apple flavours. J Sci Food Agric 71:329–336. doi:10.1002/(SICI)1097-0010(199607)71:3<329::AID-JSFA588>3.0.CO;2-8CrossRefGoogle Scholar
  45. Zini E, Biasioli F, Gasperi F, Mott D, Aprea E, Märk TD, Patocchi A, Gessler C (2005) QTL mapping of volatile compounds in ripe apples detected by proton transfer reaction-mass spectrometry. Euphytica 145:269–279. doi: 10.1007/s10681-005-1645-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • F. Dunemann
    • 1
  • D. Ulrich
    • 2
  • A. Boudichevskaia
    • 1
  • C. Grafe
    • 1
  • W. E. Weber
    • 3
  1. 1.Julius Kühn Institute (JKI)Institute for Breeding Research on Horticultural and Fruit CropsDresdenGermany
  2. 2.Julius Kühn Institute (JKI)Institute for Ecological Chemistry, Plant Analysis and Stored Product ProtectionQuedlinburgGermany
  3. 3.Martin-Luther-Universität Halle-Wittenberg, Institut für Agrar- und ErnährungswissenschaftenHalleGermany

Personalised recommendations