Molecular Breeding

, Volume 22, Issue 4, pp 527–541 | Cite as

The integration of mutant loci affecting maize endosperm development in a dense genetic map using an AFLP-based procedure

  • Luca Pasini
  • Maria Rosaria Stile
  • Enrico Puja
  • Rita Valsecchi
  • Priscilla Francia
  • Giorgia Carletti
  • Francesco Salamini
  • Adriano Marocco


In this paper, 10 mutations conditioning the appearance of defective, miniature or collapsed endosperm, but with normal sporophyte development, were considered. Homozygous mutant kernels have reduced grain weight, kernel size, density and, in some of these, higher than normal seed protein content. The mutant loci were integrated into a high-resolution genetic map in order to associate them to specific genes. We have placed 1167 AFLP markers on a consensus map using IBM2 as a backbone and reaching an average of 1 marker every 1.9 cM. We have identified AFLP markers linked to all individual mutant alleles. BSA was adopted to screen the largest possible number of primer combinations on homozygous F3 mutant and wild type plants. The ten mutant loci are linked to the closest AFLP or SSR markers with distances ranging from 0 to 17.9 cM. The genes we have defined by the existence of mendelian mutants can now be considered good candidates for testing the association to QT loci.


Zea mays Viable endosperm mutants Bulked segregant analysis Integrated molecular maps 



We gratefully acknowledge support from Sieglinde Effgen and Hakan Özkan for AFLP analysis. This work was supported by the Ministero dell’Università e della Ricerca of Italy (FIRB contract no. RBAU01MHMR, Functionmap and PRIN contract no. 2006074848).

Supplementary material

11032_2008_9196_MOESM1_ESM.doc (20 kb)
MOESM1 (DOC 20.5 kb)
11032_2008_9196_MOESM2_ESM.pdf (18.3 mb)
MOESM2 (PDF 18722 kb)
11032_2008_9196_MOESM3_ESM.doc (648 kb)
MOESM3 (DOC 648 kb)


  1. Austin DF, Lee M (1996) Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theor Appl Genet 92:817–826CrossRefGoogle Scholar
  2. Barton NH, Keightley PD (2002) Understanding quantitative genetic variation. Nature Rev Genet 3:11–21CrossRefGoogle Scholar
  3. Berke TG, Rocheford TR (1995) Quantitative trait loci for flowering, plant and ear height, and kernel traits in maize. Crop Sci 35:1542–1549Google Scholar
  4. Bortiri E, Jackson D, Hake S (2006) Advances in maize genomics: the emergence of positional cloning. Curr Opin Plant Biol 9:164–171PubMedCrossRefGoogle Scholar
  5. Boyer D, Hannah LC (2001) Kernel mutants in corn. In: Hallauer AR (ed) Specialty corns. CRC Press, Boca Raton, pp 1–31Google Scholar
  6. Castiglioni P, Pozzi C, Heun M, Terzi V, Müller KJ, Rohde W, Salamini F (1998) An AFLP-based procedure for the efficient mapping of mutations and DNA probes in barley. Genetics 149:2039–2056PubMedGoogle Scholar
  7. Castiglioni P, Ajmone-Marsan P, van Wijk R, Motto M (1999) AFLP markers in a molecular linkage map of maize: co-dominant scoring and linkage group distribution. Theor Appl Genet 99:425–431CrossRefGoogle Scholar
  8. Causse M, Santoni S, Damerval C, Maurice A, Charcosset A, Deatnck J, Devienne D (1996) A composite map of expressed sequences in maize. Genome 39:418–432PubMedCrossRefGoogle Scholar
  9. Doebley J, Bacigalupo A, Stec A (1994) Inheritance of kernel weight in two maize-teosinte hybrid populations: implications for crop evolution. J Hered 85:191–195Google Scholar
  10. Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488PubMedCrossRefGoogle Scholar
  11. Falque M (2005) IRILmap: linkage map distance correction for intermated recombinant inbred lines/advanced recombinant inbred strains. Bioinformatics 21:3441–3442PubMedCrossRefGoogle Scholar
  12. Falque M, Decousset L, Dervins D, Jacob AM, Joets J, Martinant JP, Raffoux X, Ribier N, Ridel C, Samson D, Charcosset A, Murigneux A (2005) Linkage mapping of 1454 new maize candidate gene loci. Genetics 170:1957–1966PubMedCrossRefGoogle Scholar
  13. Gardiner J, Coe EH, Melia-Hancock S, Hoisington DA, Chao S (1993) Development of a core RFLP map in maize using an immortalized F2 population. Genetics 134:917–930PubMedGoogle Scholar
  14. Hawes C (1994) Electron microscopy. In: Harris N, Hoparka KJ (eds) Plant cell biology: a practical approach. Oxford University Press, Oxford, pp 69–96Google Scholar
  15. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  16. Lee M, Sharopova N, Beavis WD, Grant D, Katt M, Blair D, Hallauer A (2002) Expanding the genetic map of maize with the intermated B73 × Mo17 (IBM) population. Plant Mol Biol 48:453–461PubMedCrossRefGoogle Scholar
  17. Liu K, Goodman M, Muse S, Smith JS, Buckler E, Doebley J (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117–2128PubMedGoogle Scholar
  18. Lukowitz W, Gillmor CS, Scheibe WR (2000) Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. Plant Physiol 123:795–805PubMedCrossRefGoogle Scholar
  19. Lur HS, Setter TL (1993) Endosperm development of maize defective kernel (dek) mutants. Auxin and cytokinin levels. Ann Botany 72:1–3CrossRefGoogle Scholar
  20. Manzocchi LA, Daminati MG, Gentinetta E, Salamini F (1980a) Viable defective endosperm mutants in maize I: Kernel weight, protein fractions and zein subunits in mature endosperm. Maydica 25:105–116Google Scholar
  21. Manzocchi LA, Daminati MG, Gentinetta E (1980b) Viable defective endosperm mutants in maize II: Kernel weight, nitrogen and zein accumulation during endosperm development. Maydica 25:199–210Google Scholar
  22. Melchinger AE, Utz HF, Schön CC (1998) Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics 149:383–403PubMedGoogle Scholar
  23. Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832PubMedCrossRefGoogle Scholar
  24. Miller ME, Chourey PS (1992) The maize invertase-deficient miniature-1 seed mutation is associated with aberrant pedicel and endosperm development. Plant Cell 4:297–305PubMedCrossRefGoogle Scholar
  25. Mohsenin NN (1970) Physical properties of plant and animal materials. Gordon and Breach Science Publishers, New YorkGoogle Scholar
  26. Nandi S, Subudhi PK, Senedhira D, Manigbas NL, Sen-Mandi S, Huang N (1997) Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotyping. Mol Gen Genet 255:1–8PubMedCrossRefGoogle Scholar
  27. Olsen OA (2001) Endosperm development: cellularization and cell fate specification. Ann Rev Plant Physiol Plant Mol Biol 52:233–267CrossRefGoogle Scholar
  28. Pozzi C, Di Pietro D, Halas G, Roig C, Salamini F (2003) Integration of a barley (Hordeum vulgare) molecular linkage map with the position of genetic loci hosting 29 developmental mutants. Heredity 90:390–396PubMedCrossRefGoogle Scholar
  29. Qi X, Stam P, Lindhout P (1997) Use of the locus specific AFLP markers to construct a high density molecular map in barley. Theor Appl Genet 96:376–384CrossRefGoogle Scholar
  30. Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E, Li B, Hainey CF, Radovic S, Zaina G, Rafalski JA, Tingey SV, Miao GH, Phillips RL, Tuberosa R (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA 104:11376–11381PubMedCrossRefGoogle Scholar
  31. Sharapova N, McMullen MD, Schultz L, Schroeder S, Sanchez-Villeda H, Gardiner J, Bergstrom D, Houchins K, Melia-Hancock S, Musket T, Duru N, Polacco M, Edwards K, Ruff T, Register JC, Brouwer C, Thompson R, Velasco R, Chin E, Lee M, Woodman-Clikeman W, Long MJ, Liscum E, Cone K, Davis G, Coe EH (2002) Development and mapping of SSR markers for maize. Plant Mol Biol 48:463–481CrossRefGoogle Scholar
  32. Stich B, Maurer HP, Melchinger AE, Frisch M, Heckenberger M, van der Voort JR, Peleman J, Sorensen AP, Reif JC (2006) Comparison of linkage disequilibrium in elite european maize inbred lines using AFLP and SSR markers. Mol Breed 17:217–226CrossRefGoogle Scholar
  33. Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf 8 polymorphisms associate with variation in flowering time. Nat Genet 28:286–289PubMedCrossRefGoogle Scholar
  34. Torti G, Manzocchi L, Salamini F (1986) Free and bound indole-acetic acid is low in the endosperm of the maize mutant defective endosperm-B18. Theor Appl Genet 72:602–605CrossRefGoogle Scholar
  35. Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0, software for the calculation of genetic linkage maps. Plant Research International, WageningenGoogle Scholar
  36. Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new concept for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  37. Vuylsteke M, Mank R, Antonise R, Bastiaans E, Senior ML, Stuber CW, Melchinger AE, Lübberstedt T, Xia XC, Stam P, Zabeau M, Kuiper M (1999) Two high-density AFLP linkage maps of Zea mays L.: analysis of distribution of AFLP markers. Theor Appl Genet 99:921–935CrossRefGoogle Scholar
  38. Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley JF (2005) The origin of the naked grains of maize. Nature 436:714–719PubMedCrossRefGoogle Scholar
  39. Winkler CR, Jensen NM, Cooper M, Podlich DW, Smith OS (2003) On the determination of recombination rates in intermated recombinant inbred populations. Genetics 164:741–745PubMedGoogle Scholar
  40. Zabeau M, Vos P (1993) Selective restriction fragment amplification: a general method for DNA fingerprinting. European Application No 92402629.7, publication No 0 534 858 A1Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Luca Pasini
    • 1
  • Maria Rosaria Stile
    • 2
  • Enrico Puja
    • 2
  • Rita Valsecchi
    • 1
  • Priscilla Francia
    • 2
  • Giorgia Carletti
    • 1
  • Francesco Salamini
    • 3
  • Adriano Marocco
    • 1
  1. 1.Istituto di Agronomia generale e Coltivazioni erbaceeUniversità Cattolica del Sacro CuorePiacenzaItaly
  2. 2.Istituto Sementi e Tecnologie AgroalimentariLodiItaly
  3. 3.Dipartimento di Produzione vegetaleUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations