Molecular Breeding

, Volume 22, Issue 2, pp 251–266 | Cite as

Whole genome mapping in a wheat doubled haploid population using SSRs and TRAPs and the identification of QTL for agronomic traits

  • C.-G. Chu
  • S. S. Xu
  • T. L. Friesen
  • J. D. Faris


Genetic maps are useful for detecting quantitative trait loci (QTL) associated with quantitative traits and for marker-assisted selection (MAS) in breeding. In this research, we used the wheat × maize method to develop a doubled haploid (DH) population derived from the synthetic hexaploid wheat (SHW) line TA4152-60 and the North Dakota hard red spring wheat line ND495. The population consisted of 213 lines, of which a subset of 120 lines was randomly selected and used to construct linkage maps of all 21 chromosomes and for QTL detection. The whole genome maps consisted of 632 markers including 410 SSRs, 218 TRAPs, 1 RFLP, and 3 phenotypic markers, and spanned 3,811.5 cM with an average density of one marker per 6.03 cM. Telomere sequence-based TRAPs allowed us to define the ends of seven linkage groups. Analysis revealed major QTLs associated with the traits of days to heading on chromosomes 5A and 5B, plant height on chromosomes 4D and 5A, and spike characteristics on chromosomes 3D, 4A, 4D, 5A and 5B. The DH population and genetic map will be a useful tool for the identification of disease resistance QTL and agronomically important loci, and will aid in the identification and development of markers for MAS.


Triticum aestivum Embryo rescue TRAPs SSRs Agronomic trait 



The authors thank Zhaohui Liu and Bing Yue for critical review, S.W. Meinhardt for providing purified Ptr ToxA and partially purified SnTox1, Jinguo Hu for providing the telomere-sequence based TRAP fixed primers, Zengcui Zhang for help doing the RFLP analysis. This research was supported by USDA-ARS CRIS Projects 5442-22000-037-00D and 5442-22000-030-00D.


  1. Akkaya MS, Bhagwatt AA, Cregan PB (1992) Length polymorphisms of simple sequence repeat DNA in soybean. Genetics 132:1131–1139PubMedGoogle Scholar
  2. Beckman JS, Weber JL (1992) Survey of human and rat microsatellites. Genomics 12:627–631PubMedCrossRefGoogle Scholar
  3. Brazauskas G, Pasakinskiene I, Jahoor A (2004) AFLP analysis indicates no introgression of maize DNA in wheat × maize crosses. Plant Breed 123:117–121CrossRefGoogle Scholar
  4. Cadalen T, Sourdille P, Charmet G, Tixier MH, Gay G, Boeuf C, Bernard S, Leroy P, Bernard M (1998) Molecular markers linked to genes affecting plant height in wheat using a doubled-haploid population. Theor Appl Genet 96:933–940CrossRefGoogle Scholar
  5. Chalmers KJ, Cambell AW, Kretschmer J, Karakousis A, Henschke PH, Pierens S, Harker N, Pallotta M, Cornish GB, Shariflou MR, Rampling LR, McLanchlan A, Daggard G, Sharp PJ, Holton TA, Sutherland MW, Appels R, Langridge P (2001) Construction of three linkage maps in bread wheat, Triticum aestivum. Aust J Agric Res 52:1089–1119CrossRefGoogle Scholar
  6. Craig IL (1974) Haploid plants (2n = 21) from in vitro anther culture of T. aestivum. Can J Genet Cytol 16:696–700Google Scholar
  7. Ellis MH, Spielmeyer W, Gale KR, Rebetzke GJ, Richards RA (2002) “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 105:1038–1042PubMedCrossRefGoogle Scholar
  8. Faris JD, Anderson JA, Francl LJ, Jordahl JG (1996) Chromosomal location of a gene conditioning insensitivity in wheat to a necrosis-inducing culture filtrate from Pyrenophora triticirepentis. Phytopathology 86:459–463CrossRefGoogle Scholar
  9. Faris JD, Haen KM, Gill BS (2000) Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154:823–835PubMedGoogle Scholar
  10. Faris JD, Fellers JP, Brooks SA, Gill BS (2003) A bacterial artificial chromosome contig spanning the major domestication gene Q in wheat and identification of a candidate gene. Genetics 164:311–321PubMedGoogle Scholar
  11. Groos C, Gay G, Perretant MR, Gervais L, Bernard M, Dedryver F, Charmet G (2002) Study of the relationship between pre-harvest sprouting and grain color by quantitative trait loci analysis in a white-red grain bread-wheat cross. Theor Appl Genet 104:39–47PubMedCrossRefGoogle Scholar
  12. Guyomarc’h H, Sourdille P, Charmet G, Edwards KJ, Bernard M (2002) Characterization of polymorphic microsatellite markers from Aegilops taushii and transferability to the D-genome of bread wheat. Theor Appl Genet 104:1164–1172PubMedCrossRefGoogle Scholar
  13. Hanocq E, Niarquin M, Heumez E, Rousset M, Le Gouis J (2004) Detection and mapping of QTL for earliness components in a bread wheat recombinant inbred lines population. Theor Appl Genet 110:106–115PubMedCrossRefGoogle Scholar
  14. Hu J (2006) Defining the sunflower (Helianthus annuus L.) linkage group ends with the Arabidopsis-type telomere sequence repeat-derived markers. Chromosome Res 14:535–548PubMedCrossRefGoogle Scholar
  15. Hu J, Vick BA (2003) TRAP (target region amplification polymorphism), a novel marker technique for plant genotyping. Plant Mol Biol Rep 21:289–294CrossRefGoogle Scholar
  16. Jantasuriyarat C, Vales MI, Watson CJW, Riera-Lizarazu O (2004) Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor Appl Genet 108:261–273PubMedCrossRefGoogle Scholar
  17. Kato K, Miura H, Sawada S (1999) QTL mapping of genes controlling ear emergence time and plant height on chromosome 5A of wheat. Theor Appl Genet 98:472–477CrossRefGoogle Scholar
  18. Kisana NS, Nkongolo KK, Quick JS, Johnson DL (1993) Production of doubled haploids by anther culture and wheat × maize method in a wheat breeding programme. Plant Breed 110:96–102CrossRefGoogle Scholar
  19. Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Google Scholar
  20. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181PubMedCrossRefGoogle Scholar
  21. Laurie DA, Bennett MD (1988) The production of haploid wheat plants from wheat × maize crosses. Theor Appl Genet 76:393–397CrossRefGoogle Scholar
  22. Li J, Klindworth DL, Shireen F, Cai X, Hu J, Xu SS (2006) Molecular characterization and chromosome-specific TRAP-marker development for Langdon durum D-genome disomic substitution lines. Genome 49:1545–1554PubMedCrossRefGoogle Scholar
  23. Liu ZH, Faris JD, Meinhardt SW, Ali S, Rasmussen JB, Friesen TL (2004) Genetic and physical mapping of a gene conditioning sensitivity in wheat to a partially purified host-selective toxin produced by Stagonospora nodorum. Phytopathology 94:1056–1060CrossRefPubMedGoogle Scholar
  24. Liu ZH, Anderson JA, Hu J, Friesen TL, Rasmussen JB, Faris JD (2005) A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet 111:782–794PubMedCrossRefGoogle Scholar
  25. Liu Q, Ni Z, Peng H, Song W, Liu Z, Sun Q (2007) Molecular mapping of a dominant non-glaucousness gene from synthetic hexaploid wheat (Triticum aestivum L.). Euphytica 155:71–78CrossRefGoogle Scholar
  26. Lynch M, Walsh B (1989) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, MAGoogle Scholar
  27. Matzk F, Mahn A (1994) Improved techniques for haploid production in wheat using chromosome elimination. Plant Breed 113:125–129CrossRefGoogle Scholar
  28. Muramatsu M (1986) The vulgare super gene, Q: its universality in durum wheat and its phenotypic effect in tetraploid and hexaploid wheats. Can J Genet Cytol 28:30–41Google Scholar
  29. Nelson JC (1997) QGENE: software for marker-based genomic analysis and breeding. Mol Breed 3:239–245CrossRefGoogle Scholar
  30. Paillard S, Schnurbusch T, Winzeler M, Messmer M, Sourdille P, Abderhalden O, Keller B, Schachermayr G (2003) An intergrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor Appl Genet 107:1235–1242PubMedCrossRefGoogle Scholar
  31. Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697PubMedCrossRefGoogle Scholar
  32. Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusiæ D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti M-C, Hollington PA, Aragués R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880PubMedCrossRefGoogle Scholar
  33. Rozen S, Skaletsky HJ (2000) PRIMER3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  34. Röder MS, Korzun V, Gill BS, Ganal MW (1998a) The physical mapping of microsatellite markers in wheat. Genome 41:278–283CrossRefGoogle Scholar
  35. Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M-H, Leroy P, Ganal MW (1998b) A microsatellite map of wheat. Genetics 149:2007–2023PubMedGoogle Scholar
  36. SAS Institute (1999) SAS/STAT User’s Guide, Releases:8.2, 8.1, 8.0. SAS Institute, Inc., Cary, NCGoogle Scholar
  37. Sears ER (1954) The aneuploids of common wheat. Univ Missouri Agric Exp Stn Res Bull 572:1–59Google Scholar
  38. Sears ER (1966) Nullisomic-tetrasomic combinations in hexaploid wheat. In: Riley R, Lewis KR (eds) Chromosome manipulation and plant genetics. Oliver and Boyd, Edinburgh, pp 29–45Google Scholar
  39. Simons KJ, Fellers JP, Trick HN, Zhang Z, Tai Y-S, Gill BS, Faris JD (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172:547–555PubMedCrossRefGoogle Scholar
  40. Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114PubMedCrossRefGoogle Scholar
  41. Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560PubMedCrossRefGoogle Scholar
  42. Sourdille P, Tixier MH, Charmet G, Gay G, Cadalen T, Bernard S, Bernard M (2000) Location of genes involved in ear compactness in wheat (Triticum aestivum) by means of molecular markers. Mol Breed 6:247–255CrossRefGoogle Scholar
  43. Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the Courtot-Chinese Spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538PubMedGoogle Scholar
  44. Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25PubMedCrossRefGoogle Scholar
  45. Torada A, Koike M, Mochida K, Ogihara Y (2006) SSR-based linkage map with new markers using an intraspecific population of common wheat. Theor Appl Genet 112:1042–1051PubMedCrossRefGoogle Scholar
  46. Tóth B, Galiba G, Féher E, Sutka J, Snape JW (2003) Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theor Appl Genet 107:509–514PubMedCrossRefGoogle Scholar
  47. Wang S, Basten CJ, Zeng ZB (2007) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC, USAGoogle Scholar
  48. Xu SS, Hu J, Faris JD (2003) Molecular characterization of Langdon durum-Triticum dicoccoides chromosome substitution lines using TRAP (target region amplification polymorphism) markers. In: Proc 10th International Wheat Genet Symposium, vol 1. Istituto Sperimentale per la Cerealicoltura, Rome, Italy, pp 91–94Google Scholar
  49. Xu SS, Friesen TL, Mujeeb-Kazi A (2004) Seedling resistance to tan spot and Stagonospora nodorum blotch in synthetic hexaploid wheats. Crop Sci 44:2238–2245CrossRefGoogle Scholar
  50. Zhang HF, Francl LJ, Jordahl JG, Meinhardt SW (1997) Structural and physical properties of a necrosis-inducing toxin from Pyrenophora tritici-repentis. Phytopathology 87:154–160CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • C.-G. Chu
    • 1
  • S. S. Xu
    • 2
  • T. L. Friesen
    • 2
  • J. D. Faris
    • 2
  1. 1.Department of Plant SciencesNorth Dakota State UniversityFargoUSA
  2. 2.USDA-ARS, Northern Crop Science LaboratoryFargoUSA

Personalised recommendations