Molecular Breeding

, Volume 17, Issue 4, pp 307–316 | Cite as

Presence of an intron in inverted repeat constructs does not necessarily have an effect on efficiency of post-transcriptional gene silencing

  • Berlinda H.J.B. Heilersig
  • Annelies E.H.M. Loonen
  • Anne-Marie A. Wolters
  • Richard G.F. Visser


The effect of introns on silencing efficiency was tested in inverted repeat constructs of Granule-Bound Starch Synthase (GBSSI) cDNA by comparing the silencing efficiencies induced by inverted repeat constructs with and without introns. No effect could be attributed to the presence of introns indicating that the introns neither enhance nor inhibit post-transcriptional gene silencing. The effect of a spliceable intron in the spacer was studied by comparing constructs harbouring a spliceable or a non-spliceable intron in the spacer. As opposed to the general belief that splicing of an intron increases silencing efficiency, the use of a spliceable intron in the spacer did not result in enhancement of silencing in our experimental system.

Key words:

Granule-bound starch synthase Intron Inverted repeat Post-transcriptional gene silencing Potato 



double-stranded RNA


Granule-Bound Starch Synthase I


intron-mediated enhancement


Post-Transcriptional Gene Silencing


small interfering RNA


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the European Union (project QLK3-2000-00078). We would like to thank Mark Fiers for his help with the in silico predictons of the dsRNA structures, and Marcos Malosetti for statistical assistance.


  1. Bonifacio G.F., Brown T., Conn G.L., Lane A.N. (1997). Comparison of the electrophoretic and hydrodynamic properties of DNA and RNA oligonucleotide duplexes. Biophys. J. 73:1532–1538PubMedCrossRefGoogle Scholar
  2. Callis J., Fromm M., Walbot V. (1987). Introns increase gene expression in cultured maize cells. Genes Dev. 1:1183–1200PubMedCrossRefGoogle Scholar
  3. Cerutti H. (2003). RNA interference: traveling in the cell and gaining functions? Trends Genet. 19:39–46CrossRefPubMedGoogle Scholar
  4. Chambers S.P., Prior S.E., Barstow D.A., Minton N.P. (1988). The pMTL nic- cloning vectors. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene 68:139–149CrossRefPubMedGoogle Scholar
  5. Dean C., Favreau M., Bond-Nutter D., Bedbrook J., Dunsmuir P. (1989). Sequences downstream of translation start regulate quantitative expression of two petunia rbcS genes. Plant Cell 1:201–208CrossRefPubMedGoogle Scholar
  6. Fire A., Xu S., Montgomery M.K., Kostas S.A., Driver S.E., Mello C.C. (1998). Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811CrossRefPubMedGoogle Scholar
  7. Goldoni M., Azzalin G., Macino G., Cogoni C. (2004). Efficient gene silencing by expression of double stranded RNA in Neurospora crassa. Fungal Genet. Biol. 41:1016–1024CrossRefPubMedGoogle Scholar
  8. Hamilton A.J., Baulcombe D.C. (1999). A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952CrossRefPubMedGoogle Scholar
  9. Hamilton A., Voinnet O., Chappell L., Baulcombe D. (2002). Two classes of short interfering RNA in RNA silencing. EMBO J. 21:4671–4679CrossRefPubMedGoogle Scholar
  10. Heeres P., Schippers-Rozenboom M., Jacobsen E., Visser R.G.F. (2002). Transformation of a large number of potato varieties: genotype-dependent variation in efficiency and somaclonal variability. Euphytica 124:13–22CrossRefGoogle Scholar
  11. Heilersig H.J.B., Loonen A., Bergervoet M., Wolters A.M.A. and Visser R.G.F. 2006. Post-transcriptional gene silencing in potato: effects of size and sequence of the inverted repeats. Plant Mol. Biol. (in press).Google Scholar
  12. Hendriks T., Vreugdenhil D., Stiekema W.J. (1991). Patatin and four serine proteinase inhibitor genes are differentially expressed during potato tuber development. Plant Mol. Biol. 17:385–394CrossRefPubMedGoogle Scholar
  13. Hofacker I.L. (2003). Vienna RNA secondary structure server. Nucleic Acids Res. 31:3429–3431CrossRefPubMedGoogle Scholar
  14. Hofvander P., Persson P.T., Tallberg P.T. and Wikstroem O. 1992. Genetically engineered modification of potato from amylopectin-type starch. International Patent Application WO 92/11376Google Scholar
  15. Kuipers A.G.J., Jacobsen E., Visser R.G.F. (1994). Formation and deposition of amylose in the potato tuber starch granule are affected by the reduction of granule-bound starch synthase gene expression. Plant Cell 6:43–52CrossRefPubMedGoogle Scholar
  16. Kuipers A.G.J., Soppe W.J.J., Jacobsen E., Visser R.G.F. (1995). Factors affecting the inhibition by antisense RNA of granule-bound starch synthase gene expression in potato. Mol. Gen. Genet. 246:745–755CrossRefPubMedGoogle Scholar
  17. Lazo G.R., Stein P.A., Ludwig R.A. (1991). A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Bio/Technology 9:963–967CrossRefPubMedGoogle Scholar
  18. Luehrsen K.R., Walbot V. (1991). Intron enhancement of gene expression and the splicing efficiency of introns in maize cells. Mol. Gen. Genet. 225:81–93CrossRefPubMedGoogle Scholar
  19. Maas C., Laufs J., Grant S., Korfhage C., Werr W. (1991). The combination of a novel stimulatory element in the first exon of the maize Shrunken-1 gene with the following intron 1 enhances reporter gene expression up to 1000-fold. Plant Mol. Biol. 16:199–207CrossRefPubMedGoogle Scholar
  20. Mascarenhas D., Mettler I.J., Pierce D.A., Lowe H.W. (1990). Intron-mediated enhancement of heterologous gene expression in maize. Plant Mol. Biol. 15:913–920CrossRefPubMedGoogle Scholar
  21. McGinnis K., Chandler V., Cone K., Kaeppler H., Kaeppler S., Kerschen A., Pikaard C., Richards E., Sidorenko L., Smith T., Springer N., Wulan T. (2005). Transgene-induced RNA interference as a tool for plant functional genomics. Methods Enzymol. 392:1–24PubMedCrossRefGoogle Scholar
  22. Miki D., Itoh R., Shimamoto K. (2005). RNA silencing of single and multiple members in a gene family of rice. Plant Physiol. 138:1903–1913CrossRefPubMedGoogle Scholar
  23. Murashige T., Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15:473–497CrossRefGoogle Scholar
  24. Nakayashiki H., Hanada S., Nguyen B.Q., Kadotani N., Tosa Y., Mayama S. (2005). RNA silencing as a tool for exploring gene function in ascomycete fungi. Fungal Genet. Biol. 42:275–283PubMedCrossRefGoogle Scholar
  25. Rethmeier N., Seurinck J., Van Montagu M., Cornelissen M. (1997). Intron-mediated enhancement of transgene expression in maize is a nuclear, gene-dependent process. Plant J. 12:895–899CrossRefPubMedGoogle Scholar
  26. Rose A.B. (2002). Requirements for intron-mediated enhancement of gene expression in Arabidopsis. RNA 8:1444–1453CrossRefPubMedGoogle Scholar
  27. Sambrook J., Fritsch E.F., Maniatis T. (1989). Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, Cold Spring Harbor Laboratory PressGoogle Scholar
  28. Smith N.A., Singh S.P., Wang M.B., Stoutjesdijk P.A., Green A.G., Waterhouse P.M. (2000). Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320PubMedCrossRefGoogle Scholar
  29. Takken F.L.W., Luderer R., Gabriëls S.H.E.J., Westerink N., Lu R., de Wit P.J.G.M., Joosten M.H.A.J. (2000). A functional cloning strategy, based on a binary PVX-expression vector, to isolate HR-inducing cDNAs of plant pathogens. Plant J. 24:275–283CrossRefPubMedGoogle Scholar
  30. van der Leij F.R., Visser R.G.F., Ponstein A.S., Jacobsen E., Feenstra W.J. (1991). Sequence of the structural gene for granule-bound starch synthase of potato (Solanum tuberosum L.) and evidence for a single point deletion in the amf allele. Mol. Gen. Genet. 228:240–248CrossRefPubMedGoogle Scholar
  31. Visser R.G.F., Hergersberg M., van der Leij F.R., Jacobsen E., Witholt B., Feenstra W.J. (1989). Molecular cloning and partial characterization of the gene for granule-bound starch synthase from a wild type and an amylose-free potato (Solanum tuberosum L.). Plant Sci. 64:185–192CrossRefGoogle Scholar
  32. Visser R.G.F., Somhorst I., Kuipers G.J., Ruys N.J., Feenstra W.J., Jacobsen E. (1991). Inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense constructs. Mol. Gen. Genet. 225:289–296CrossRefPubMedGoogle Scholar
  33. Wang H., Lee M.M., Schiefelbein J.W. (2002). Regulation of the cell expansion gene RHD3 during Arabidopsis development. Plant Physiol. 129:638–649CrossRefPubMedGoogle Scholar
  34. Wesley S.V., Helliwell C.A., Smith N.A., Wang M.B., Rouse D.T., Liu Q., Gooding P.S., Singh S.P., Abbott D., Stoutjesdijk P.A., Robinson S.P., Gleave A.P., Green A.G., Waterhouse P.M. (2001). Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J. 27:581–590CrossRefPubMedGoogle Scholar
  35. Zhang H., Kolb F.A., Brondani V., Billy E., Filipowicz W. (2002) Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J. 21:5875–5885CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Berlinda H.J.B. Heilersig
    • 1
  • Annelies E.H.M. Loonen
    • 1
  • Anne-Marie A. Wolters
    • 1
  • Richard G.F. Visser
    • 1
  1. 1.Graduate School Experimental Plant Sciences, Laboratory of Plant Breeding, Department of Plant SciencesWageningen UniversityWageningenthe Netherlands

Personalised recommendations