Advertisement

Molecular Breeding

, Volume 17, Issue 3, pp 201–216 | Cite as

Expression of the Vitreoscilla Hemoglobin (VHb)-Encoding Gene in Transgenic White Poplar: Plant Growth and Biomass Production, Biochemical Characterization and Cell Survival under Submergence, Oxidative and Nitrosative Stress Conditions

  • S. Zelasco
  • S. Reggi
  • P. Calligari
  • A. Balestrazzi
  • C. Bongiorni
  • E. Quattrini
  • G. Delia
  • S. Bisoffi
  • C. Fogher
  • M. Confalonieri
Article

Abstract

Expression of the vhb gene, encoding the hemoglobin protein from Vitreoscilla spp. (VHb), has been shown to increase cell growth and protein synthesis, modify the oxygen-dependent product biosynthesis and the susceptibility to oxidative and nitrosative stresses in several host microrganisms, and to improve plant tolerance to flooding-submergence. A chimeric construct consisting of the CaMV35S promoter fused to the vhb gene and nopaline synthase terminator was transferred into white poplar (Populus alba L.) via Agrobacterium tumefaciens in order to test the generality of these phenomena. The presence of the vhb gene was demonstrated by Southern blot analysis. Accumulation of the vhb transcript and protein was detected in all the selected transgenic poplar lines. In vitro growth bioassays revealed that the vhb gene expression in transgenic poplar plants did not significantly affect their growth pattern. One out of the six selected transgenic lines showed significantly higher values for plant height and stem biomass in greenhouse conditions and exhibited enhancement of root biomass production and stem diameter when compared to the wild-type plants. However, no significant differences in chlorophyll a, b, total carotenoid and protein contents were observed. Two selected transgenic lines were characterized in more detail for tolerance to submergence, oxidative and nitrosative stresses. Under in vitro and in vivo submergence conditions, growth parameters and total protein content of transgenic VHb poplars were similar to those observed in the wild-type plants. In addition, leaf discs from the transgenic plants maintained in standard growth conditions did not reveal increased tolerance to oxidative stress by hydrogen peroxide compared to wild-type plants. In a parallel study, cell suspension cultures obtained from both wild-type and VHb transgenic lines were evaluated for growth and survival in the presence of oxidative and nitrosative stresses. No significant differences were observed between the tested VHb and wild-type poplar lines. Our results show that VHb expression in plants can have erratic effects since the enhancement of plant growth and biomass production and the tolerance to submergence, oxidative and nitrosative stresses are not consistently dependent on the presence of this specific function. Consequently, the genetic manipulation of plant oxygen metabolism must be carefully evaluated and extensive biochemical, molecular and cellular investigations are required to assess the real value of the final products.

Keywords

Flooding Hemoglobin Nitrosative stress Oxidative stress Populus Transgenic Vitreoscilla 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balestrazzi, A., Carbonera, D., Confalonieri, M. 2000Agrobacterium tumefaciens-mediated transformation of elite white poplar (Populus alba L) and regeneration of transgenic plantsJ. Genet. Breed.54263270Google Scholar
  2. Bollinger, C.J., Bailey, J.E., Kallio, P.T. 2001Novel hemoglobins to enhance microaerobic growth and substrate utilization in Escherichia coliBiotechnol. Prog.17798808CrossRefPubMedGoogle Scholar
  3. Bradford, M.M. 1976A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye bindingAnal. Biochem.72248254CrossRefPubMedGoogle Scholar
  4. Bulow, L., Holmberg, N., Lilius, G., Bailey, J.E. 1999The metabolic effects of native and transgenic hemoglobins on plantsTrends Biotechnol.172124PubMedGoogle Scholar
  5. Cao, M.X., Huang, J.Q., Wei, Z.M., Yao, Q.H., Wan, C.Z., Lu, J.A. 2004Engineering higher yield and herbicide resistance in rice by Agrobacterium-mediated multiple gene transformationCrop Sci.4422062213Google Scholar
  6. Carimi, F., Zottini, M., Formentin, E., Terzi, M., Lo Schiavo, F. 2003Cytokinins: new apoptotic inducers in plantsPlanta216413421PubMedGoogle Scholar
  7. Chen, W., Hughes, D.E., Bailey, J.E. 1994Intracellular expression of Vitreoscilla hemoglobin alters the aerobic metabolism of Saccharomyces cerevisiaeBiotechnol. Prog.10308313CrossRefPubMedGoogle Scholar
  8. Clarke, A., Desikan, R., Hurst, R.D., Hancock, J.T., Neill, S.J. 2000NO wayback: nitric oxide and programmed cell death in Arabidopsis thaliana suspension culturesPlant J.24667677CrossRefPubMedGoogle Scholar
  9. Confalonieri, M., Belenghi, M., Balestrazzi, A., Negri, S., Facciotto, G., Schenone, G., Delledonne, M. 2000Transformation of elite white poplar (Populus alba L.) cv. ‘Villafranca’ and evaluation of herbicide resistancePlant Cell Rep.19978982CrossRefGoogle Scholar
  10. DePinto, M.C., Tommasi, F., De Gara, L. 2002Changes in the antioxidant systems as part of the signalling pathway responsible for the programmed cell death activated by nitric oxide and reactive oxygen species in tobacco Bright-Yellow 2 cellsPlant Physiol.130698708Google Scholar
  11. Dordas, C., Hasinoff, B.B., Igamberdiev, A.U., Manac’h, N., Rivoal, J., Hill, R.D. 2003bExpression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stressPlant J.35763770CrossRefGoogle Scholar
  12. Dordas, C., Rivoal, J., Hill, R.D. 2003aPlant hemoglobins, nitric oxide and hypoxic stressAnn. Bot.91173178CrossRefGoogle Scholar
  13. Farres, J., Kallio, P.T. 2002Improved cell growth in tobacco suspension cultures expressing Vitreoscilla hemoglobinBiotechnol. Prog.18229233CrossRefPubMedGoogle Scholar
  14. Frey, A.D., Farres, J., Bollinger, C.J.T., Kallio, P.T. 2002Bacterial hemoglobins and flavohemoglobins for alleviation of nitrosative stress in Escherichia coliAppl. Environ. Microbiol.6848354840PubMedGoogle Scholar
  15. Frey, A.D., Kallio, P.T. 2003Bacterial hemoglobins and flavohemoglobins: versatile proteins and their impact on microbiology and biotechnologyFEMS Microbiol. Rev.789121Google Scholar
  16. Frey, A.D., Oberle, B.T., Farres, J., Kallio, P.T. 2004Expression of Vitreoscilla hemoglobin in tobacco cell cultures relieves nitrosative stress in vivo and protects from NO in vitroPlant Biotechnol. J.2221231Google Scholar
  17. Fry, D.J., Douglas, G.C., Saieed, N.T. 1997Somaclonal variation in Populus: an evaluationKlopfenstein, N.B.Chun, Y.W.Kim, M.S.Ahuia, M.R. eds. Micropropagation, genetic engineering, and molecular biology of PopulusUSDAFort Collins CO3343Gen Tech Rep RM-GRT-297Google Scholar
  18. Geckil, H., Gencer, S., Kahraman, H., Erenler, S.O. 2003Genetic engineering of Enterobacter aerogenes with the Vitreoscilla hemoglobin gene: cell growth, survival, and antioxidant enzyme status under oxidative stressRes. Microbiol.154425431CrossRefPubMedGoogle Scholar
  19. Geckil, H., Stark, B.C., Webster, D.A. 2001Cell growth and oxygen uptake of Escherichia coli and Pseudomonas aeruginosa are differently affected by the genetically engineered Vitreoscilla hemoglobin geneJ. Biotechnol.855766CrossRefPubMedGoogle Scholar
  20. Häggman, H., Frey, A.D., Ryynänen, L., Aronen, T., Julkunen-Tiitto, R., Tiimonen, H., Pihakaski-Maunsbach, K., Jokipii, S., Chen, X., Kallio, P.T. 2003Expression of Vitreoscilla hemoglobin in hybrid aspen (Populus tremula x tremuloides)Plant Biotech. J.1287300Google Scholar
  21. Holmberg, N., Lilius, G., Bailey, J.E., Bulow, L. 1997Transgenic tobacco expressing Vitreoscilla hemoglobin exhibits enhanced growth and altered metabolite productionNat. Biotechnol.15244247CrossRefPubMedGoogle Scholar
  22. Hood, E.E., Gelvin, S.B., Melchers, L.S., Hoekema, A. 1993New Agrobacteria helper plasmids for gene transfer to plantsTransgenic Res.2208218CrossRefGoogle Scholar
  23. Kallio, P.T., Bailey, J.E. 1996Intracellular expression of Vitreoscilla hemoglobin (VHb) enhances total protein secretion and improves the production of alpha-amylase and neutral protease in Bacillus subtilisBiotechnol. Prog.123139CrossRefPubMedGoogle Scholar
  24. Kaur, R., Pathania, R., Sharma, V., Mande, S.C., Dikshit, K.L. 2002Chimeric Vitreoscilla hemoglobin (VHb) carrying a flavoreductase domain relieves nitrosative stress in Escherichia coli: new insight into the functional role of VHbAppl. Environ. Microbiol.68152160CrossRefPubMedGoogle Scholar
  25. Khosla, C., Bailey, J.E. 1988Heterologous expression of a bacterial hemoglobin improves the growth properties of recombinant Escherichia coliNature331633635CrossRefPubMedGoogle Scholar
  26. Khosla, C., Curtis, J.E., DeModena, J., Rinas, U., Bailey, J.E. 1990Expression of intracellular hemoglobin improves protein synthesis in oxygen-limited Escherichia coliBiotechnology8849853PubMedGoogle Scholar
  27. Khosravi, M., Webster, D.A., Stark, B.C. 1990Presence of the bacterial hemoglobin gene improves α-amylase production of a recombinant Escherichia coli strainPlasmid24190194PubMedGoogle Scholar
  28. Kirsten, W.G. 1983Rapid, automatic, high capacity Dumas determination of nitrogenMicrochem. J.28529CrossRefGoogle Scholar
  29. Li, X., Peng, R.-H., Fan, H.-Q., Xiong, A.-S., Yao, Q.-H., Cheng, Z.-M., Li, Y. 2005Vitreoscilla hemoglobin overexpression increases submergence tolerance in cabbagePlant Cell Rep.23710715PubMedGoogle Scholar
  30. Lloyd, G., McCown, B.H. 1991Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip cultureProc. Int. Plant Prop.30421427Google Scholar
  31. Murashige, T., Skoog, F. 1962A revised medium for rapid growth and bioassays with tobacco tissue culturesPhysiol. Plant.157397Google Scholar
  32. Pedroso, M.C., Magalhaes, J.R., Durzan, D. 2000Nitric oxide induces cell death in Taxus cellsPlant Sci.157173180CrossRefPubMedGoogle Scholar
  33. Rogers, S.O., Bendich, A.J. 1988Extraction of DNA from plant tissueGelvin, S.B.Schilperoort, R.A. eds. Plant Molecular Biology ManualKluwer Academic PublishersDordrecht, NetherlandsA6:1--10Google Scholar
  34. Saviani, E.E., Orsi, C.H., Oliveira, J.F.P., Pinto-Maglio, C.A.F., Salgado, I. 2002Participation of the mitochondrial permeability transition pore in nitric oxide-induced plant cell deathFEBS Lett.510136140CrossRefPubMedGoogle Scholar
  35. Sowa, A., Duff, S.M.G., Guy, P.A., Hill, R.D. 1998Altering hemoglobin levels changes energy status in maize cells under hypoxiaProc. Natl. Acad. Sci. USA951031710321CrossRefPubMedGoogle Scholar
  36. Verwoerd, T.C., Dekker, B.M.M., Hoekema, A. 1989A small-scale procedure for the rapid isolation of plant RNAsNucleic Acid Res.172362PubMedGoogle Scholar
  37. Wellburn, A.R. 1994The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolutionJ. Plant Physiol.144307313Google Scholar
  38. Wilhelmson A., Kallio P., Oksman-Caldentey K.M. and Nuutila A.M. 2002. Expression of Vitreoscilla hemoglobin enhances growth of Hyoscyamus muticus hairy root cultures. In: Abstracts Xth International Congress of Plant Tissue Culture and Biotechnology, Orlando, USA, 23–28 June 2002.Google Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • S. Zelasco
    • 1
  • S. Reggi
    • 2
  • P. Calligari
    • 1
  • A. Balestrazzi
    • 3
  • C. Bongiorni
    • 4
  • E. Quattrini
    • 5
  • G. Delia
    • 1
  • S. Bisoffi
    • 1
  • C. Fogher
    • 4
  • M. Confalonieri
    • 6
  1. 1.Istituto di Sperimentazione per la Pioppicoltura – C.R.A.Casale Monferrato (AL)Italy
  2. 2.Plantechno SrlCasalmaggiore (CR)Italy
  3. 3.Dipartimento di Genetica e Microbiologia “A. Buzzati-Traverso”Università di PaviaPaviaItaly
  4. 4.Istituto di Genetica VegetaleUniversità Cattolica del S. CuorePiacenzaItaly
  5. 5.C.E.T.A.S, Università degli Studi di MilanoTavazzanoItaly
  6. 6.Istituto Sperimentale per le Colture Foraggere – C.R.A.LodiItaly

Personalised recommendations