Molecular Breeding

, Volume 17, Issue 2, pp 159–171 | Cite as

Transgenic indica Rice Expressing ns-LTP-Like Protein Shows Enhanced Resistance to Both Fungal and Bacterial Pathogens

  • Rajesh Narhari Patkar
  • Bharat Bhushan Chattoo


Antimicrobial peptides (AMPs) from plant seeds, known to inhibit pathogen growth have a great potential in developing transgenic plants resistant to disease. Some of the nonspecific-lipid transfer proteins (ns-LTP) that facilitate in vitro transport of lipids, show antimicrobial activity in vitro. Rice seeds also contain ns-LTPs; however, these genes are expressed weakly in seedlings. We have transformed Pusa Basmati 1, an elite indica rice cultivar, with the gene for Ace-AMP1 from Allium cepa, coding for an effective antimicrobial protein homologous to ns-LTPs. The gene for Ace-AMP1 was cloned under an inducible rice phenylalanine ammonia-lyase (PAL) or a constitutive maize ubiquitin (UbI) promoter. Ace-AMP1 was expressed in transgenic lines and secreted in the apoplastic space. Protein extracts from leaves of transgenic plants inhibited three major rice pathogens, Magnaporthe grisea, Rhizoctonia solani and Xanthomonas oryzae, in vitro. Enhanced resistance against these pathogens was observed in in planta assays, and the degree of resistance correlating with the levels of Ace-AMP1 with an average increase in resistance to blast, sheath blight, and bacterial leaf blight disease by 86%, 67%, and 82%, respectively. Importantly, transgenic rice plants, with stable integration and expression of Ace-AMP1, retained their agronomic characteristics while displaying enhanced resistance to both fungal and bacterial pathogens.

Key words

Ace-AMP1 Genetic transformation Magnaporthe grisea Oryza sativa Rhizoctonia solani Xanthomonas oryzae 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bi, Y., Cammue, B.P.A., Goodwin, P.H., KrishnaRaj, S., Saxena, P.K. 1999Resistance to Botrytis cinerea in scented geranium transformed with a gene encoding the antimicrobial protein Ace-AMP1Plant Cell Rep.18835840CrossRefGoogle Scholar
  2. Blein, J.P., Coutos-Thevenot, P., Marion, D., Ponchet, M. 2002From elicitins to lipid-transfer proteins: a new insight in cell signaling involved in plant defense mechanismsTrends Plant Sci.7293296CrossRefPubMedGoogle Scholar
  3. Bonman, J.M., Mackill, D.J. 1988Durable resistance to rice blast diseaseOryza25103110Google Scholar
  4. Bravo, L.A., Close, T.J., Corcuera, L.J., Guy, C.L. 1999Characterisation of an 80-kDa dehydrin-like protein in barley responsive to cold acclimationPhysiol. Plant.106177183CrossRefGoogle Scholar
  5. Broekaert, W.F., Cammue, B.P.A., Bolle, M.F.C., Thevissen, K., Samblanx, G.W., Osborn, R.W. 1997Antimicrobial peptides in plantsCrit. Rev. Plant Sci.16297323Google Scholar
  6. Buhot, N., Douliez, J.P., Jacquemard, A., Marion, D., Tran, V., Maume, B.F., Milat, M.L., Ponchet, M., Mike, V., Kader, J.C., Blein, J.P. 2001A lipid transfer protein binds to a receptor involved in the control of plant defense responsesFEBS Lett.5092730CrossRefPubMedGoogle Scholar
  7. Cammue, B.P., Thevissen, K., Hendriks, M., Eggermont, K., Goderis, I.J., Proost, P., Damme, J., Osborn, R.W., Guerbette, F., Kader, J.C. 1995A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteinsPlant Physiol.10944555CrossRefPubMedGoogle Scholar
  8. Carmona, M.J., Molina, A., Fernández, J.A., López-Fando, J.J., García-Olmedo, F. 1993Expression of the α-thionin gene from barley in tobacco confers enhanced resistance to bacterial pathogensPlant J.3457462CrossRefPubMedGoogle Scholar
  9. Chen, D.C., Yang, B.C., Kuo, T.T. 1992One-step transformation of yeast in stationary phaseCurr. Genet.218384CrossRefPubMedGoogle Scholar
  10. Chen, L., Zhang, S., Beachy, R.N., Fauquet, C.M. 1998A protocol for consistentlarge scale production of fertile transgenic rice plantsPlant Cell Rep.182531Google Scholar
  11. Christensen, A.H., Quail, P. 1996Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plantsTransgenic Res.5213218CrossRefPubMedGoogle Scholar
  12. Bolle, M.F.C., Osborn, R.W., Goderis, I.J., Noe, L., Acland, D., Hart, C.A., Torrekens, S., Leuven, F.V., Broekaert, W.F. 1996Antimicrobial peptides from Mirabilis jalapaAmaranthus caudatus: expression, processing, localization and biological activity in transgenic tobaccoPlant Mol. Biol.319931008CrossRefPubMedGoogle Scholar
  13. Dellaporta, S.L., Wood, J., Hicks, J.B. 1983A plant DNA minipreparation: version 2Plant Mol. Biol. Rep.11922Google Scholar
  14. Dewitte, W., Onckelen, H. 2001Probing the distribution of plant hormones by immunocytochemistryPlant Growth Regul.336774CrossRefGoogle Scholar
  15. Francois, I.E.J.A., Bolle, M.F.C., Dwyer, G., Goderis, I.J.W.M., Woutors, P.F.J., Verhaert, P.D., Proost, P., Schaaper, W.M.M., Cammue, B.P.A., Broekaert, W.F. 2002Transgenic expression in Arabidopsis of a polyprotein construct leading to production of two different antimicrobial proteinsPlant Physiol.12813461358CrossRefPubMedGoogle Scholar
  16. Gao, A.G., Hakimi, S.M., Mittanck, C.A., Wu, Y., Woerner, B.M., Stark, D.M., Shah, D.M., Liang, J., Rommens, C.M.T. 2000Fungal pathogen protection in potato by expression of a plant defensin peptideNat. Biotechnol.1813071310PubMedGoogle Scholar
  17. Garcia-Olmedo, F., Molina, F., Segura, A., Moreno, M. 1995The defensive role of non-specific lipid transfer proteins in plantsTrends Microbiol.37274PubMedGoogle Scholar
  18. Hiei, Y., Ohta, S., Komari, T., Kumashiro, T. 1994Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNAPlant J.6271282CrossRefPubMedGoogle Scholar
  19. Hoh, F., Pons, J.L., Gautier, M.F., de Lamotte, F., Dumas, C. 2005Structure of a liganded type 2 non-specific lipid-transfer protein from wheat and the molecular basis of lipid bindingActa Cryst.D61397406Google Scholar
  20. Iwai, T., Kaku, H., Honkura, R., Nakamura, S., Ochiai, H., Sasaki, T., Ohashi, Y. 2002Enhanced resistance to seed transmitted bacterial diseases in transgenic rice plants overproducing an oat cell-wall-bound thioninMol. Plant Microbe Interact.15515521PubMedGoogle Scholar
  21. Jach, G., Gornhardt, B., Mundy, J., Logemann, J., Pinsdorf, E., Leah, R., Schell, J., Maas, C. 1995Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobaccoPlant J.897109CrossRefPubMedGoogle Scholar
  22. Kader, J.C. 1996Lipid-transfer protein in plantsAnnu. Rev. Plant Physiol. Plant Mol. Biol.47627654CrossRefPubMedGoogle Scholar
  23. Kauffman, H.E., Reddy, A.P.K., Hsieh, S.P.V., Marca, S.D. 1973An improved technique for evaluation of resistance of rice varities to Xanthomonas oryzaePlant Dis. Rep.57537541Google Scholar
  24. Kornberg, A., Horecker, B.L., Kaplan, N.O. 1955Meth. EnzymAcademic PressNew York323Google Scholar
  25. Li, X., Gasic, K., Cammue, B.P.A., Broekaert, W.F., Korban, S.S. 2003Transgenic rose lines harboring an antimicrobial protein geneAce-AMP1demonstrate enhanced resistance to powdery mildew (Sphaerotheca pannosa)Planta218226232CrossRefPubMedGoogle Scholar
  26. Maldonado, A.M., Doerner, P., Dixon, R.A., Lamb, C.J., Cameron, R.K. 2002A putative lipid transfer protein involved in systemic resistance signaling in ArabidopsisNature419399403CrossRefPubMedGoogle Scholar
  27. Mitchell, D.A., Marshall, T.K., Deschenes, R.J. 1993Vectors for the inducible expression of glutathione S-transferase fusion proteins in yeastYeast.9715723CrossRefPubMedGoogle Scholar
  28. Mourgues, F., Brisset, M.N., Chevreau, E. 1998Strategies to improve plant resistance to bacterial diseases through genetic engineeringTrends Biotechnol.16203210CrossRefPubMedGoogle Scholar
  29. Pastor, A., Lopez-Carbonell, M., Alegre, L. 1999Abscisic acid immunolocalisation and ultrastructural changes in water-stressed lavender (Lavendula stoechas L.) plantsPhysiol. Plant.105272279CrossRefGoogle Scholar
  30. Perez-Garcia, A., Pereira, S., Garcia Gutierrez, A., Cazorla, F., Salema, R., Vicente, A., Canovas, F. 1998Cytosolic localization in tomato mesophyll cells of a novel glutamine synthetase induced in response to bacterial infection or phosphinothricin treatmentPlanta206426434Google Scholar
  31. Singh, G.P., Srivastava, M.K., Singh, R.V., Singh, R.M. 1977Variation in quantitative and qualitative losses caused by bacterial blight in different rice varietiesIndian Phytopathol.30180185Google Scholar
  32. Sridevi, G., Dhandapani, M., Veluthambi, K. 2005Agrobacterium-mediated transformation of White Ponnia non-basmati variety of indica rice (Oryza sativa L.)Curr. Sci.88128132Google Scholar
  33. Tassin, S., Broeckaert, W.F., Marion, D., Acland, D.P., Ptak, M., Vovelle, F., Sodano, P. 1998Solution structure of Ace-AMP1, a potent antimicrobial protein extracted from onion seeds. Structural analogies with plant nonspecific lipid transfer proteinsBiochemistry.3736233637CrossRefPubMedGoogle Scholar
  34. Zhu, Q., Dabi, T., Beeche, A., Yamamoto, R., Lawton, M.A., Lamb, C. 1995Cloning and properties of a rice gene encoding phenylalanine ammonia lyasePlant Mol. Biol.29535550CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Rajesh Narhari Patkar
    • 1
  • Bharat Bhushan Chattoo
    • 1
  1. 1.Department of Microbiology and Biotechnology Centre, Faculty of ScienceM.S. University of BarodaVadodaraIndia

Personalised recommendations