Molecular Breeding

, Volume 16, Issue 1, pp 21–31 | Cite as

Endopolygalacturonase: a Candidate Gene for Freestone and Melting Fleshin Peach



Peach fruit are handled, processed, and marketed according to their stone adhesion and fruit softening type. Uncertainty exists over whether these simply inherited traits are controlled by two linked loci, Freestone (F) and Melting flesh (M) or one multi-allelic locus, and whether M is controlled by the cell wall degrading enzyme, endopolygalacturonase. From morphological and molecular analysis of two related segregating populations of peach, we conclude that a single locus containing at least one gene for endopolygalacturonase, controls both F and M with at least three effective alleles. A simple diagnostic PCR test is now available for the three major phenotypes of freestone melting flesh (FMF), clingstone melting flesh (CMF), and clingstone non-melting flesh (CNMF).


Clingstone Co-segregation Fruit softening Pleiotropy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aranzana, M.J., Pineda, A., Cosson, P., Dirlewanger, E., Ascasibar, J., Cipriani, G., Ryder, C.D., Testolin, R., Abbott, A., King, G.J., Iezzoni, A.F., Arus, P. 2003A set of simple-sequence repeat (SSR) markers covering the Prunus genomeTheor. Appl. Genet106819825PubMedGoogle Scholar
  2. Bailey, J.S., French, A.P. 1933The inheritance of certain characteristics in the peachProc. Amer. Soc. Hortic. Sci29127130Google Scholar
  3. Bailey J.S. and French A.P. 1949. The inheritance of certain fruit and foliage characteristics in the peach. Mass. Agr. Expt. Sta. Bul. 452.Google Scholar
  4. Brummell, D.A., Harpster, M.H. 2001Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plantsPlant Mol. Biol47311340CrossRefPubMedGoogle Scholar
  5. Callahan, A.M., Scorza, R., Bassett, C., Nickerson, M., Abeles, F.B. 2004Deletions in an endopolygalacturonase gene cluster correlate with non-melting flesh texture in peachFunc. Plant Biol31159168CrossRefGoogle Scholar
  6. CUGI. 2003. Clemson University Genomics Institute Peach EST Project. URL Google Scholar
  7. Dettori, M.T., Quarta, R., Verde, I. 2001A peach linkage map integrating RFLPs, SSRs, RAPDs, and morphological markersGenome44783790CrossRefPubMedGoogle Scholar
  8. Dirlewanger, E., Cosson, P., Tavaud, M., Aranzana, M.J., Poizat, C., Zanetto, A., Arus, P., Laigret, F. 2002Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.)Theor. Appl. Genet105127138CrossRefPubMedGoogle Scholar
  9. Etienne, C., Rothan, C., Moing, A., Plomion, C., Bodenes, C., Svanella-Dumas, L., Cosson, P., Pronier, V., Monet, R., Dirlewanger, E. 2002Candidate genes and QTLs for sugar and organic acid content in peach [ Prunus persica(L.) Batsch]Theor. Appl. Genet105145159CrossRefPubMedGoogle Scholar
  10. Foolad, M.R., Arulsekar, S., Becerra, V., Bliss, F.A. 1995A genetic map of Prunus based on an interspecific cross between peach and almondTheor. Appl. Genet91262269CrossRefGoogle Scholar
  11. Hadfield, K.A., Bennett, A.B. 1998Polygalacturonases: many genes in search of a functionPlant Physiol117337343CrossRefPubMedGoogle Scholar
  12. Hadfield, K.A., Rose, J.K.C., Yaver, D.S., Berka, R.M., Bennett, A.B. 1998Polygalacturonase gene expression in ripe melon fruit supports a role for polygalacturonase in ripening-associated pectin disassemblyPlant Physiol117363373CrossRefPubMedGoogle Scholar
  13. Hayashi, T., Yamamoto, T. 2002Genome research on peach and pearJ. Plant Biotech424552Google Scholar
  14. Hiwasa, K., Kinugasa, Y., Amano, S., Hashimoto, A., Nakano, R., Inaba, A., Kubo, Y. 2003Ethylene is required for both the initiation and progression of softening in pear (Pyrus communis L.) fruitJ. Exp. Bot54771779CrossRefPubMedGoogle Scholar
  15. Lee, E., Speirs, J., Gray, J., Brady, C.J. 1990Homologies to the tomato endopolygalacturonase gene in the peach genomePlant Cell Environ13513521Google Scholar
  16. Lester, D.R., Sherman, W.B., Atwell, B.J. 1996Endopolygalacturonase and the melting flesh (M) locus in peachJ. Amer. Soc. Hort. Sci121231235Google Scholar
  17. Lester, D.R., Speirs, J., Orr, G., Brady, C.J. 1994Peach (Prunus persica) endopolygalacturonase cDNA isolation and mRNA analysis in melting and nonmelting peach cultivarsPlant Physiol105225231CrossRefPubMedGoogle Scholar
  18. Monet, R. 1989Peach genetics: pastpresent and futureActa Hort2544953Google Scholar
  19. Okie W.R. 1998. Handbook of peach and nectarine varieties: Performance in the southeastern United States and index of names. US Department of Agriculture, Agriculture Handbook No. 714.Google Scholar
  20. Orr, G., Brady, C. 1993Relationship of endopolygalacturonase activity to fruit softening in a freestone peachPostharvest Biol. Biotech3121130CrossRefGoogle Scholar
  21. Pressey, R., Avants, J.K. 1978Difference in polygalacturonase composition of clingstone and freestone peachesJ. Food Sci4314151423Google Scholar
  22. Pressey, R., Hinton, D.M., Avants, J.K. 1971Development of polygalacturonase activity and solubilization of pectin in peaches during ripeningJ. Food Sci3610701073Google Scholar
  23. Rao, G.U., Paran, I. 2003Polygalacturonase: a candidate gene for the soft flesh and deciduous fruit mutation in CapsicumPlant Mol. Biol51135141PubMedGoogle Scholar
  24. Redondo-Nevado, J., Moyano, E., Medino-Escobar, N., Caballero, J.L., Munoz-Blanco, J. 2001A fruit-specific and developmentally regulated endopolygalacturonase gene from strawberry (Fragaria ananassa cv. Chandler)J. Exp. Bot5219411945CrossRefPubMedGoogle Scholar
  25. Rozen S. and Skaletsky H.J. 1998. Primer3. Code available at html.Google Scholar
  26. Trainotti, L., Zanin, D., Casadoro, G. 2003A cell wall-oriented genomic approach reveals a new and unexpected complexity of the softening in peachesJ. Exp. Bot5418211832CrossRefPubMedGoogle Scholar
  27. Van Der Heyden, C.R., Holford, P., Richards, G.D. 1997A new source of peach germplasm containing semi-freestone non-melting flesh typesHortScience32288289Google Scholar
  28. Waldron, J., Peace, C.P., Searle, I.R., Furtado, A., Wade, N., Findlay, I., Graham, M.W., Carroll, B.J. 2002Randomly amplified DNA fingerprinting (RAF): a culmination of DNA marker technologies based on arbitrarily-primed PCR amplificationJ. Biomed. Biotech2141150CrossRefGoogle Scholar
  29. Weaver, K.R., Caetano-Anolles, G., Gresshoff, P.M., Callahan, L.M. 1994Isolation and cloning of DNA amplification products from silver-stained polyacrylamide gelsBiotechniques16226227PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  1. 1.Kearney Agricultural Center, Department of PomologyUniversity of California, DavisParlierUSA
  2. 2.Department of PomologyUniversity of California, DavisUSA

Personalised recommendations