Skip to main content
Log in

Aggregates formed as a result of the expression of yeast Met2 gene in transgenic tobacco plants, stimulate the production of stress-protective metabolites and increased the plants tolerance to heat stress

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Methionine biosynthesis has taken different evolutionary pathways in bacteria, fungi and plants. To gain insight into these differences and to search for new ways of manipulating methionine biosynthesis in plants, the yeast (Saccharomyces cerevisiae) Met2 gene and the bacteria (Leptospira meyeri) MetX gene, both encoding homoserine O-acetyltransferase, were expressed in tobacco plants. We found protein aggregates in extracts of these transgenic plants, whose levels were much higher in plants grown at 35 °C than at 25 °C. It appears that the yeast and the bacterial proteins are heat labile and tend to change their intracellular conformation. These conformational changes of the transgenic proteins were more prominent at high temperature and most probably triggered aggregation of the yeast and the bacterial proteins. Moreover, plants expressing the yeast gene that grew at 35 °C over-accumulated stress-associated metabolites, such as phenolic compounds, including tannins, as well as the amino acid arginine. In addition, the transgenic plants expressing high levels of the foreign genes show growth retardation, which further suggests that, these plants suffer from internal stress. The changes in protein conformation and the consequent triggering of stress response may account for the ability of these transgenic plants to tolerate more extreme heat stress (60 °C) than the wild-type plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HAT:

homoserine O-acetyltransferase

HST:

homoserine O-succinyltransferase

References

  • D. Becker E. Kemper J. Schell R. Masterson (1992) ArticleTitleNew plant binary vectors with selectable markers located proximally to the left T-DNA border Plant Mol. Biol. 20 1195–1197

    Google Scholar 

  • D. Biran N. Brot H. Weissbach E.Z. Ron (1995) ArticleTitleHeat-shock dependent transcriptional activation of the metA gene of Escherichia coli J. Bacteriol. 177 1374–1379

    Google Scholar 

  • S. Boggess C. Stewart D. Aspinall L. Peleg (1976) ArticleTitleEffect of water stress on proline synthesis from radioactive precursors Plant Physiol. 58 398–401

    Google Scholar 

  • P. Bourhy A. Martel D. Margarita I. Saint-Girons J. Belfaiza (1997) ArticleTitleHomoserine O-acetyltransferaseinvolved in Leptospira meyeri methionine biosynthetic pathway, is not feedback inhibited J. Bacteriol. 179 4396–4398

    Google Scholar 

  • A.H. Datko J. Giovanelli H. Mudd (1974) ArticleTitleHomocysteine biosynthesis in green plants. Phosphohomoserine as the physiological substrate for cystathionine J. Biol. Chem. 249 1139–1155

    Google Scholar 

  • N. Forlani E. Martegani L. Alberghina (1991) ArticleTitlePosttranscriptional regulation of the expression of MET2 gene of Saccharomyces cerevisiae Biochim. Biophys. Acta 1089 47–53

    Google Scholar 

  • E. Gur D. Biran E. Gazit E.Z. Ron (2002) ArticleTitleIn vivo aggregation of a single enzyme limits growth of Escherichia coli at elevated temperatures Mol. Microbiol. 46 1391–1397

    Google Scholar 

  • Y. Hacham T. Avraham R. Amir (2002) ArticleTitleThe N-terminal region of Arabidopsis cystathionine gamma synthase plays an important role in methionine metabolism Plant Physiol. 128 454–462

    Google Scholar 

  • Y. Hacham U. Gophna R. Amir (2003) ArticleTitleIn vivo analysis of various substrates utilized by cystathionine gamma synthase and O-acetylhomoserine sulfhydrylase in methionine biosynthesis Mol. Biol. Evol. 20 1513–1520

    Google Scholar 

  • A. Hagerman L.G. Butler (1978) ArticleTitleProtein precipitation method for the quantitative determination of tannins J. Agric. Food Chem. 26 809–812

    Google Scholar 

  • A. Hauslanden J.S. Stamler (1998) ArticleTitleNitric oxide in plant immunity Proc. Natl. Acad. Sci. USA 95 10345–10347

    Google Scholar 

  • R. Horsch B. Fry N.L. Hoffmann D. Eichholtz S.G. Rogers R.T. Fraley (1985) ArticleTitleA simple and general method for transferring genes into plants Science 227 1229–1231 Occurrence Handle1:CAS:528:DyaL2MXhtFSjsLc%3D

    CAS  Google Scholar 

  • L.R. Howard N. Pandjaitan T. Morelock M.I. Gil (2002) ArticleTitleAntioxidant capacity and phenolic content of spinach as affected by genetics and growing season J. Agric. Food Chem. 50 5891–5896

    Google Scholar 

  • K. Iba (2002) ArticleTitleAcclimative response to temperature stress in higher plants: approaches of gene engineering for temperature tolerance Ann. Rev. Plant Biol. 53 225–245

    Google Scholar 

  • R. Jaenicke (1995) ArticleTitleFolding and association versus misfolding and aggregation of proteins Philos. Trans. R. Soc. London B. Biol. Sci. 348 97–105

    Google Scholar 

  • H.M. Lam M.H. Hsieh G. Coruzzi (1998) ArticleTitleReciprocal regulation of distinct asparagine synthetase genes by light and metabolites in Arabidopsis thaliana Plant J. 16 345–353

    Google Scholar 

  • T. Langin G. Faugeron C. Goyon A. Nicolas J.L. Rossignol (1986) ArticleTitleThe Met2 gene of Saccharomyces cervisiae: Molecular cloning and nucleotide sequence Gene 49 283–293

    Google Scholar 

  • Y. Ma H.L. Hendershot (2001) ArticleTitleThe unfolding tale of the unfolded protein response Cell 107 827–830

    Google Scholar 

  • P.K. Macnitol A.H. Datko J. Giovanelli H. Mudd (1981) ArticleTitleHomocysteine biosynthesis in green plants: physiological importance of the transsulfuration pathway in Lemna paucicostata Plant Physiol. 86 619–625

    Google Scholar 

  • S. Nagai M. Flavin (1971) ArticleTitleSynthesis of O-acetylhomoserine Methods Enzymol. 17B 423–424

    Google Scholar 

  • H. Okamura M. Akio Y. Yasuko N. Mitsuru T. Yoshimasa (1993) ArticleTitleAntioxidant activity of tannins and flavonoids in Eucalytus rostrata Phytochemistry 33 557–561

    Google Scholar 

  • E. Rabe C. Lovatt (1986) ArticleTitleIncreased arginine biosynthesis during phosphorus deficiency Plant Physiol. 81 774–779

    Google Scholar 

  • S. Ravanel B. Gakiere D. Job R. Douce (1998) ArticleTitleCystathionine gama-synthase from Arabidopsis thaliana: purification and biochemical characterization of the recombinant enzyme over-expressed in Escherichia coli Biochem. J. 331 639–648

    Google Scholar 

  • R.M. Rivero J.M. Ruiz P.C. Garcia L.R. Lopez-Lefebre E. Sanchez L. Romero (2001) ArticleTitleResistance to cold and heat stress: accumulation of phenolic compounds in tomato and watermelon plants Plant Sci. 160 315–321

    Google Scholar 

  • E.Z. Ron (1975) ArticleTitleGrowth rate of Enterobacteriaceae at elevated temperatures: limitation by methionine J. Bacteriol. 124 243–246

    Google Scholar 

  • R. Rosen D. Biran E. Gur D. Becher M. Hecker E.Z. Ron (2002) ArticleTitleProtein aggregation in Escherichia coli: role of proteases FEMS Microbiol. Lett. 207 9–12

    Google Scholar 

  • I. Saint-Girons C. Parsot M. Zakin O. Barzu G.N. Cohen (1988) ArticleTitleMethionine biosynthesis in enterobacteriaceae: biochemical, regulatory, and evolutionary aspects CRC Crit. Rev. Biochem. 23 IssueIDSuppl 1 S1–S42

    Google Scholar 

  • M.E. Salvucci K.W. Osteryoung S.J. Crafts-Brandner E. Vierling (2001) ArticleTitleExceptional sensitivity of Rubisco activase to thermal denaturation in vitroin vivo Plant Physiol. 127 1053–1064

    Google Scholar 

  • O. Shaul G. Galili (1992) ArticleTitleIncreased lysine synthesis in tobacco plants that express high levels of bacterial dihydrodipicolinate synthase in their chloroplasts Plant J. 2 203–209

    Google Scholar 

  • T. Swain W.E. Hillis (1959) ArticleTitleThe phenolic constituents of Prunus somestica. The quantities analysis of phenolic constituents J. Agric. Food Chem. 10 63–68

    Google Scholar 

  • P.B. Tran R.J. Miller (1999) ArticleTitleAggregates in neurodegenerative disease: crowds and power? Trends Neurosci. 22 194–197

    Google Scholar 

  • S. Wickner M.R. Maurizi S. Gottesman (1999) ArticleTitlePosttranslational quality control: folding, refolding, and degrading proteins Science 286 1888–1893 Occurrence Handle10.1126/science.286.5446.1888 Occurrence Handle1:CAS:528:DyaK1MXnvVykurc%3D Occurrence Handle10583944

    Article  CAS  PubMed  Google Scholar 

  • B. Ye H.H. Muller J. Zhang J. Gressel (1997) ArticleTitleConstitutively elevated levels of putrescine and putrescine-generating enzymes correlated with oxidant stress resistance in Conyza bonariensis and wheat Plant Physiol. 115 1443–1451

    Google Scholar 

  • M. Zhu J.D. Phillipson P.M. Greengrass N.E. Bowery Y. Cai (1997) ArticleTitlePlant polyphenols: biologically active compounds or non-selective binders to protein? Phytochemistry 44 441–447

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamrasni, D., Matityahu, I. & Amir, R. Aggregates formed as a result of the expression of yeast Met2 gene in transgenic tobacco plants, stimulate the production of stress-protective metabolites and increased the plants tolerance to heat stress. Mol Breeding 15, 65–74 (2005). https://doi.org/10.1007/s11032-004-2737-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-004-2737-2

Keywords

Navigation