Motivation and Emotion

, Volume 40, Issue 4, pp 507–519 | Cite as

Flow and enjoyment beyond skill-demand balance: The role of game pacing curves and personality

Original Paper


According to flow theory, skill-demand balance is optimal for flow. Experimentally, balance has been tested only against strong overload and strong boredom. We assessed flow and enjoyment as distinct experiences and expected that they (a) are not optimized by constant balance, (b) experimentally dissociate, and (c) are supported by different personality traits. Beyond a constant balance condition (“balance”), we realized two dynamic pacing conditions where demands fluctuated through short breaks: one condition without overload (“dynamic medium”) and another with slight overload (“dynamic high”). Consistent with assumptions, constant balance was not optimal for flow (balance ≤ dynamic medium < dynamic high) and enjoyment (balance ≤ dynamic high < dynamic medium). Action orientation enabled high flow even under the suboptimal condition of balance. Sensation seeking increased enjoyment under the suboptimal but arousing dynamic high condition. We discuss dynamic changes in positive affect (seeking and mastering challenge) as an integral part of flow.


Flow experience Skill-demand balance State versus action orientation Sensation seeking Affective change 


  1. Abuhamdeh, S. (2012). A conceptual framework for the integration of flow theory and cognitive evaluation theory. In S. Engeser (Ed.), Advances in flow research (pp. 109–121). New York: Springer.CrossRefGoogle Scholar
  2. Abuhamdeh, S., & Csikszentmihalyi, M. (2012a). Attentional involvement and intrinsic motivation. Motivation and Emotion, 36, 257–267. doi: 10.1007/s11031-011-9252-7.CrossRefGoogle Scholar
  3. Abuhamdeh, S., & Csikszentmihalyi, M. (2012b). The importance of challenge for the enjoyment of intrinsically-motivated, goal-directed activities. Personality and Social Psychology Bulletin, 38, 317–330. doi: 10.1177/0146167211427147.CrossRefPubMedGoogle Scholar
  4. Aiken, L. S., & West, S. G. (1991). Multiple regression: Testing and interpreting interactions. Newbury Park, CA: Sage.Google Scholar
  5. Atkinson, J. W. (1957). Motivational determinants of risk-taking behavior. Psychological Review, 64, 359–372.CrossRefPubMedGoogle Scholar
  6. Bartle, R., Bateman, C., Falstein, N., Hinn, M., Isbister, K., Lazzaro, N., et al. (2009). Beyond game design—Nine steps toward creating better videogames. Boston, MA: Course Technology.Google Scholar
  7. Baumann, N. (2012). Autotelic personality. In S. Engeser (Ed.), Advances in flow research (pp. 165–186). Heidelberg, Germany: Springer.CrossRefGoogle Scholar
  8. Baumann, N., & Scheffer, D. (2010). Seeing and mastering difficulty: The role of affective change in achievement flow. Cognition and Emotion, 24, 1304–1328. doi: 10.1080/02699930903319911.CrossRefGoogle Scholar
  9. Baumann, N., & Scheffer, D. (2011). Seeking flow in the achievement domain: The flow motive behind flow experience. Motivation and Emotion, 35, 267–284. doi: 10.1007/s11031-010-9195-4.CrossRefGoogle Scholar
  10. Beauducel, A., Strobel, A., & Brocke, B. (2003). Psychometrische Eigenschaften und Normen einer deutschsprachigen Fassung der Sensation Seeking-Skalen, Form V. Diagnostica, 49, 61–72. doi: 10.1026//0012-1924.49.2.61.CrossRefGoogle Scholar
  11. Beckmann, J., & Kazén, M. (1994). Action and state orientation and the performance of top athletes. In J. Kuhl & J. Beckmann (Eds.), Volition and personality: Action versus state orientation (pp. 439–451). Göttingen, Germany: Hogrefe.Google Scholar
  12. Ceja, L., & Navarro, J. (2012). ‘Suddenly I get into the zone’: Examining discontinuities and nonlinear changes in flow experiences at work. Human Relations, 65, 1101–1127. doi: 10.1177/0018726712447116.CrossRefGoogle Scholar
  13. Chen, A., Darst, P. W., & Pangrazi, R. P. (2001). An examination of situational interest and its sources. British Journal of Educational Psychology, 71, 383–400. doi: 10.1348/000709901158578.CrossRefPubMedGoogle Scholar
  14. Choi, D., & Kim, J. (2004). Why people continue to play online games: In search of critical design factors to increase customer loyalty to online contents. Cyber Psychology & Behavior, 7, 11–24. doi: 10.1089/109493104322820066.CrossRefGoogle Scholar
  15. Cohen, J., & Cohen, P. (1983). Applied multiple regression/correlation analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum.Google Scholar
  16. Csikszentmihalyi, M. (1975/2000). Beyond boredom and anxiety: Experiencing flow in work and play. San Francisco: Jossey-Bass.Google Scholar
  17. Csikszentmihalyi, M., & LeFevre, J. (1989). Optimal experience in work and leisure. Journal of Personality and Social Psychology, 56, 815–822.CrossRefPubMedGoogle Scholar
  18. Csikszentmihalyi, M., Rathunde, K., & Whalen, S. (1993). Talented teenagers: A longitudinal study of their development. New York: Cambridge University Press.Google Scholar
  19. Debus, M. E., Sonnentag, S., Deutsch, W., & Nussbeck, F. W. (2014). Making flow happen: The effects of being recovered on work-related flow between and within days. Journal of Applied Psychology, 99, 713–722. doi: 10.1037/a0035881.CrossRefPubMedGoogle Scholar
  20. Dieffendorf, J. M., Hall, R. J., Lord, R. G., & Strean, M. L. (2000). Action-state orientation: Construct validity of a revised measure and its relationship to work-related variables. Journal of Applied Psychology, 85, 250–263.CrossRefGoogle Scholar
  21. Eisenberger, R., Jones, J. R., Stinglhamber, F., Shanock, L., & Randall, A. T. (2005). Flow experience at work: For high need achievers alone? Journal of Organization Behavior, 26, 755–775. doi: 10.1002/job.337.CrossRefGoogle Scholar
  22. Engeser, S. (2012). Advances in flow research. New York: Springer.CrossRefGoogle Scholar
  23. Engeser, S., & Baumann, N. (2014). Fluctuation of flow and affect in everyday life: A second look at the paradox of work. Journal of Happiness Studies,. doi: 10.1007/s10902-014-9586-4.Google Scholar
  24. Engeser, S., & Rheinberg, F. (2008). Flow, performance and moderators of challenge-skill balance. Motivation and Emotion, 32, 158–172. doi: 10.1007/s11031-008-9102-4.CrossRefGoogle Scholar
  25. Engeser, S., & Schiepe-Tiska, A. (2012). Historical lines and overview of current research. In S. Engeser (Ed.), Advances in flow research (pp. 1–22). New York: Springer.CrossRefGoogle Scholar
  26. Fullagar, C. J., & Kelloway, E. K. (2009). Flow at work: An experience sampling approach. Journal of Occupational and Organizational Psychology, 82(3), 595–615. doi: 10.1348/096317908X357903.CrossRefGoogle Scholar
  27. Hektner, J. (1996). Exploring optimal personality development: A longitudinal study of adolescents. Unpublished doctoral dissertation, University of Chicago, Chicago, IL.Google Scholar
  28. Hsu, C.-L., & Lu, H.-P. (2004). Why do people play on-line games? An extended TAM with social influences and flow experience. Information & Management, 41, 853–868. doi: 10.1016/ Scholar
  29. Jennett, C., Cox, A. L., Cairns, P., Dhoparee, S., Epps, A., Tijs, T., & Walton, A. (2008). Measuring and defining the experience of immersion in games. International Journal of Human-Computer Studies, 66, 641–661.CrossRefGoogle Scholar
  30. Keller, J., & Bless, H. (2008). Flow and regulatory compatibility: An experimental approach to the flow model of intrinsic motivation. Personality and Social Psychology Bulletin, 34, 196–209.CrossRefPubMedGoogle Scholar
  31. Keller, J., & Blomann, F. (2008). Locus of control and the flow experience: An experimental analysis. European Journal of Personality, 22, 589–607. doi: 10.1002/per.692.CrossRefGoogle Scholar
  32. Koole, S. L., Jostmann, N. B., & Baumann, N. (2012). Do demanding conditions help or hurt self-regulation? Social and Personality Psychology Compass, 6(4), 328–346. doi: 10.1111/j.1751-9004.2012.00425.x.CrossRefGoogle Scholar
  33. Kuhl, J. (1994). Action versus state orientation: Psychometric properties of the action-contol-scale (ACS-90). In J. Kuhl & J. Beckmann (Eds.), Volition and personality: Action versus state orientation (pp. 47–59). Göttingen, Germany: Hogrefe.Google Scholar
  34. Kuhl, J., & Beckmann, J. (1994). Volition and personality: Action versus state orientation. Göttingen, Germany: Hogrefe.Google Scholar
  35. Landhäußer, A., & Keller, J. (2012). Flow and its affective, cognitive, and performance-related consequences. In S. Engeser (Ed.), Advances in flow research (pp. 65–85). Heidelberg, Germany: Springer.CrossRefGoogle Scholar
  36. Lazzaro, N. (2009). Step 1: Understand emotions. In C. Bateman (Ed.), Beyond game design: Nine steps toward creating better videogames (pp. 3–49). Boston, MA: Course Technology.Google Scholar
  37. Moller, A. C., Meier, B. P., & Wall, R. D. (2010). Developing an experimental induction of flow: Effortless action in the lab. In B. Bruya (Ed.), Effortless attention: A new perspective in the cognitive science of attention and action (pp. 191–204). Cambridge, MA: MIT Press.CrossRefGoogle Scholar
  38. Moneta, G. B., & Csikszentmihalyi, M. (1996). The effect of perceived challenges and skills on the quality of subjective experience. Journal of Personality, 64, 275–310. doi: 10.1111/j.1467-6494.1996.tb00512.x.CrossRefPubMedGoogle Scholar
  39. Moneta, G. B., & Csikszentmihalyi, M. (1999). Models of concentration in natural environments: A comparative approach based on streams of experiential data. Social Behavior and Personality, 27, 603–638. doi: 10.2224/sbp.1999.27.6.603.CrossRefGoogle Scholar
  40. Nakamura, J., & Csikszentmihályi, M. (2009). Flow theory and research. In S. J. Lopez & C. R. Snyder (Eds.), Oxford handbook of positive psychology (pp. 195–207). Oxford: Oxford University Press.Google Scholar
  41. Park, J., Song, Y., & Teng, C. (2011). Exploring the links between personality traits and motivations to play online games. Cyberpsychology, Behavior, and Social Networking, 14(12), 747–751.CrossRefGoogle Scholar
  42. Quick, J. M., Atkinson, R. K., & Lin, L. (2012). Empirical taxonomies of gameplay enjoyment: Personality and video game preference. International Journal of Game-Based Learning, 2(3), 11–31.CrossRefGoogle Scholar
  43. Rheinberg, F., & Vollmeyer, R. (2003). Flow-Erleben in einem Computerspiel unter experimentell variierten Bedingungen [Flow experience in a computer game under experimentally varied conditions]. Zeitschrift für Psychologie, 211, 161–170.CrossRefGoogle Scholar
  44. Schell, J. (2008). The art of game design—A book of lenses. San Francisco, CA: Elsevier.Google Scholar
  45. Schneider, K. (1973). Motivation unter Erfolgsrisiko [Motivation under success risk]. Göttingen, Germany: Hogrefe.Google Scholar
  46. Schüler, J. (2010). Achievement-incentives determine the effects of achievement-motive incongruence on flow experience. Motivation and Emotion, 34, 2–14. doi: 10.1007/s11031-009-9150-4.CrossRefGoogle Scholar
  47. Shernoff, D., Csikszentmihalyi, M., Shneider, B., & Shernoff, E. S. (2003). Student engagement in high school classrooms from the perspective of flow theory. School Psychology Quarterly, 18, 158–176.CrossRefGoogle Scholar
  48. Zuckerman, M. (1994). Behavioral expressions and biosocial bases of sensation seeking. Cambridge: Cambridge University Press.Google Scholar
  49. Zuckerman, M., Eysenck, S. B. J., & Eysenck, H. J. (1978). Sensation seeking in England and America: Cross-cultural, age, and sex comparisons. Journal of Consulting and Clinical Psychology, 46, 139–149. doi: 10.1037/0022-006X.46.1.139.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Nicola Baumann
    • 1
  • Christoph Lürig
    • 2
  • Stefan Engeser
    • 3
  1. 1.Differential Psychology, Personality Psychology, and Diagnostics, Department IUniversity of TrierTrierGermany
  2. 2.Trier University of Applied SciencesTrierGermany
  3. 3.Friedrich-Schiller-University JenaJenaGermany

Personalised recommendations