Abstract
Electro-synthesis through a one-pot three-component condensation of corresponding aldehydes, Meldrum’s acid, and 2-(nitromethylene)imidazolidine resulted in a series of novel tetrahydroimidazo[1,2-a]pyridine-5(1H)-one derivatives containing an electronegative pharmacophore (=CNO2). The process was carried out in propanol medium with sodium bromide presented as electrolyte, inside an undivided cell with good to excellent yields. As a powerful entry into fused polycyclic structures related to bioactive heterocycles, this green protocol shows great potential.
Graphic abstract

This is a preview of subscription content, access via your institution.


References
- 1.
Kollmeyer WD, Flattum RF, Foster JP, Powell JE, Schroeder ME, Soloway SB (1999) Discovery of the nitromethylene heterocycle insecticides. In: Yamamoto I, Casida JE (eds) Nicotinoid insecticides and the nicotinic acetylcholine receptor. Springer, Tokyo, pp 71–89. https://doi.org/10.1007/978-4-431-67933-2_3
- 2.
Nauen R, Denholm I (2005) Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Arch Insect Biochem Physiol 58(4):200–215. https://doi.org/10.1002/arch.20043
- 3.
Rauch N, Nauen R (2003) Identification of biochemical markers linked to neonicotinoid cross resistance in Bemisia tabaci (Hemiptera: Aleyrodidae). Arch Insect Biochem Physiol 54(4):165–176. https://doi.org/10.1002/arch.10114
- 4.
Langer SZ, Arbilla S, Benavides J, Scatton B (1990) Zolpidem and alpidem: two imidazopyridines with selectivity for omega 1- and omega 3-receptor subtypes. Adv Biochem Psychopharmacol 46:61–72
- 5.
Ueda T, Mizushige K, Yukiiri K, Takahashi T, Kohno M (2003) Improvement of cerebral blood flow by olprinone, a phosphodiesterase-3 inhibitor, in mild heart failure. Cerebrovasc Dis 16(4):396–401. https://doi.org/10.1159/000072563
- 6.
Swainston Harrison T, Keating GM (2005) Zolpidem: a review of its use in the management of insomnia. CNS Drugs 19(1):65–89. https://doi.org/10.2165/00023210-200519010-00008
- 7.
Martínez-Urbina MA, Zentella A, Vilchis-Reyes MA, Guzmán A, Vargas O, Ramírez Apan MT, Ventura Gallegos JL, Díaz E (2010) 6-Substituted 2-(N-trifluoroacetylamino)imidazopyridines induce cell cycle arrest and apoptosis in SK-LU-1 human cancer cell line. Eur J Med Chem 45(3):1211–1219. https://doi.org/10.1016/j.ejmech.2009.11.049
- 8.
Mavel S, Renou JL, Galtier C, Allouchi H, Snoeck R, Andrei G, De Clercq E, Balzarini J, Gueiffier A (2002) Influence of 2-substituent on the activity of imidazo[1,2-a] pyridine derivatives against human cytomegalovirus. Bioorg Med Chem 10(4):941–946. https://doi.org/10.1016/S0968-0896(01)00347-9
- 9.
Kaminski JJ, Doweyko AM (1997) Antiulcer agents. 6. Analysis of the in vitro biochemical and in vivo gastric antisecretory activity of substituted imidazo[1,2-a]pyridines and related analogues using comparative molecular field analysis and hypothetical active site lattice methodologies. J Med Chem 40(4):427–436. https://doi.org/10.1021/jm950700s
- 10.
Saxena AK, Schaper KJ (2006) QSAR analysis of the time- and dose-dependent anti-inflammatory in vivo activity of substituted imidazo[1,2-a]pyridines using artificial neural networks. QSAR Comb Sci 25(7):590–597. https://doi.org/10.1002/qsar.200510175
- 11.
Bollini M, Casal JJ, Alvarez DE, Boiani L, González M, Cerecetto H, Bruno AM (2009) New potent imidazoisoquinolinone derivatives as anti-Trypanosoma cruzi agents: biological evaluation and structure–activity relationships. Bioorg Med Chem 17(4):1437–1444. https://doi.org/10.1016/j.bmc.2009.01.011
- 12.
Wiegand MH (2008) Antidepressants for the treatment of insomnia: a suitable approach? Drugs 68(17):2411–2417. https://doi.org/10.2165/0003495-200868170-00001
- 13.
Rupert KC, Henry JR, Dodd JH, Wadsworth SA, Cavender DE, Olini GC, Fahmy B, Siekierka JJ (2003) Imidazopyrimidines, potent inhibitors of p38 MAP kinase. Bioorg Med Chem Lett 13(3):347–350. https://doi.org/10.1016/S0960-894X(02)01020-X
- 14.
Rival Y, Grassy G, Michel G (1992) Synthesis and antibacterial activity of some imidazo[l,2-a]pyrimidine derivatives. Chem Pharm Bull 40(5):1170–1176. https://doi.org/10.1248/cpb.40.1170
- 15.
Chaouni-Benabdallah A, Galtier C, Allouchi H, Kherbeche A, Debouzy JC, Teulade JC, Chavignon O, Witvrouw M, Pannecouque C, Balzarini J, De Clercq E, Enguehard C, Gueiffier A (2001) Synthesis of 3-nitrosoimidazo[1,2-a]pyridine derivatives as potential antiretroviral agents. Arch Pharm 334(7):224–228. https://doi.org/10.1002/1521-4184(200107)334:7%3c224:AID-ARDP224%3e3.0.CO;2-7
- 16.
Budumuru P, Golagani S, Kantamreddi VSS (2018) Design and synthesis of novel imidazo[1,2-a]pyridine derivatives and their anti-bacterial activity. Asian J Pharm Clin Res 11(8):252–258. https://doi.org/10.22159/ajpcr.2018.v11i8.26241
- 17.
An W, Wang W, Yu T, Zhang Y, Miao Z, Meng T, Shen J (2016) Discovery of novel 2-phenyl-imidazo[1,2-a]pyridine analogues targeting tubulin polymerization as antiproliferative agents. Eur J Med Chem 112:367–372. https://doi.org/10.1016/j.ejmech.2016.02.004
- 18.
Garamvölgyi R, Dobos J, Sipos A, Boros S, Illyés E, Baska F, Kékesi L, Szabadkai I, Szántai-Kis C, Kéri G, Örfi L (2016) Design and synthesis of new imidazo[1,2-a]pyridine and imidazo[1,2-a]pyrazine derivatives with antiproliferative activity against melanoma cells. Eur J Med Chem 108:623–643. https://doi.org/10.1016/j.ejmech.2015.12.001
- 19.
Fan YH, Li W, Liu DD, Bai MX, Song HR, Xu YN, Lee S, Zhou ZP, Wang J, Ding HW (2017) Design, synthesis, and biological evaluation of novel 3-substituted imidazo[1,2-a]pyridine and quinazolin-4(3H)-one derivatives as PI3Kα inhibitors. Eur J Med Chem 139:95–106. https://doi.org/10.1016/j.ejmech.2017.07.074
- 20.
Allahabadi E, Ebrahimi S, Soheilizad M, Khoshneviszadeh M, Mahdavi M (2017) Copper-catalyzed four-component synthesis of imidazo[1,2-a]pyridines via sequential reductive amination, condensation, and cyclization. Tetrahedron Lett 58(2):121–124. https://doi.org/10.1016/j.tetlet.2016.11.081
- 21.
Devi N, Singh D, Kaur G, Mor S, Putta VPRK, Polina S, Malakar CC, Singh V (2017) In(OTf)3 assisted synthesis of β-carboline C-3 tethered imidazo[1,2-a]azine derivatives. New J Chem 41(3):1082–1093. https://doi.org/10.1039/c6nj03210a
- 22.
Cui Z, Zhu B, Li X, Cao H (2018) Access to sulfonylated furans or imidazo[1,2-: A] pyridines via a metal-free three-component, domino reaction. Org Chem Front 5(14):2219–2223. https://doi.org/10.1039/c8qo00443a
- 23.
Reynoso Lara JE, Salgado-Zamora H, Bazin MA, Campos-Aldrete ME, Marchand P (2018) Design and synthesis of imidazo[1,2-a]pyridines with carboxamide group substitution and in silico evaluation of their interaction with a LuxR-type quorum sensing receptor. J Heterocycl Chem 55(5):1101–1111. https://doi.org/10.1002/jhet.3140
- 24.
Dömling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106(1):17–89. https://doi.org/10.1021/cr0505728
- 25.
Karimi AR, Sedaghatpour F (2010) Novel mono- and bis(spiro-2-amino-4 H -pyrans): alum-catalyzed reaction of 4-hydroxycoumarin and malononitrile with isatins, quinones, or ninhydrin. Synthesis 10:1731–1735. https://doi.org/10.1055/s-0029-1219748
- 26.
Alizadeh A, Zohreh N (2012) A unique approach to catalyst-free, one-pot synthesis of spirooxindole-pyrazolines. Synlett 3:428–432. https://doi.org/10.1055/s-0031-1290322
- 27.
Wang R, Liu ZQ (2013) Ugi multicomponent reaction product: the inhibitive effect on DNA oxidation depends upon the isocyanide moiety. J Org Chem 78(17):8696–8704. https://doi.org/10.1021/jo401426n
- 28.
Yavari I, Pashazadeh R, Hosseinpour R, Ghanbari E (2013) Nef-isocyanide adducts as useful synthons in a novel synthesis of functionalized 5-imino-2-thioxothiazolidines. Tetrahedron Lett 54(22):2785–2787. https://doi.org/10.1016/j.tetlet.2013.03.041
- 29.
Akbarzadeh R, Amanpour T, Bazgir A (2014) Synthesis of 3-oxo-1,4-diazepine-5-carboxamides and 6-(4-oxo-chromen-3-yl)-pyrazinones via sequential Ugi 4CC/Staudinger/intramolecular nucleophilic cyclization and Ugi 4CC/Staudinger/aza-Wittig reactions. Tetrahedron 70(43):8142–8147. https://doi.org/10.1016/j.tet.2014.07.102
- 30.
Shaabani A, Hooshmand SE (2016) Isocyanide and Meldrum’s acid-based multicomponent reactions in diversity-oriented synthesis: from a serendipitous discovery towards valuable synthetic approaches. RSC Adv 6(63):58142–58159. https://doi.org/10.1039/c6ra11701e
- 31.
Pair E, Berini C, Noël R, Sanselme M, Levacher V, Brière JF (2014) Organocatalysed multicomponent synthesis of pyrazolidinones: Meldrum’s acid approach. Chem Commun 50(71):10218–10221. https://doi.org/10.1039/c4cc04852k
- 32.
Lipson VV, Gorobets NY (2009) One hundred years of Meldrum’s acid: advances in the synthesis of pyridine and pyrimidine derivatives. Mol Divers 13(4):399–419. https://doi.org/10.1007/s11030-009-9136-x
- 33.
Huang CH, Liu YL (2019) The Michael addition reaction of Meldrum’s acid (MA): an effective route for the preparation of reactive precursors for MA-based thermosetting resins. Polym Chem 10(15):1873–1881. https://doi.org/10.1039/c8py01643g
- 34.
Krylov CS, Komogortsev AN, Lichitsky BV, Fakhrutdinov AN, Dudinov AA, Krayushkin MM (2019) Three-component condensation of 4-imino-1-phenylimidazolidin-2-one with aldehydes and Meldrum’s acid: synthesis of imidazo[4,5-b]pyridine-2,5(4H,6H)-diones and 5-substituted 1-phenylhydantoins. Chem Heterocycl Compd 55(9):851–855. https://doi.org/10.1007/s10593-019-02548-9
- 35.
Lichitsky BV, Tretyakov AD, Komogortsev AN, Mityanov VS, Dudinov AA, Gorbunov YO, Daeva ED, Krayushkin MM (2019) Synthesis of substituted benzofuran-3-ylacetic acids based on three-component condensation of polyalkoxyphenols, arylglyoxals and Meldrum’s acid. Mendeleev Commun 29(5):587–588. https://doi.org/10.1016/j.mencom.2019.09.037
- 36.
Suresh M, Kumari A, Singh RB (2019) A transition metal free expedient approach for the C[dbnd]C bond cleavage of arylidene Meldrum’s acid and malononitrile derivatives. Tetrahedron. https://doi.org/10.1016/j.tet.2019.130573
- 37.
Mishra S, Aponick A (2019) Lactone synthesis by enantioselective orthogonal tandem catalysis. Angew Chem Int Ed 58(28):9485–9490. https://doi.org/10.1002/anie.201904438
- 38.
Yu CY, Yang PH, Zhao MX, Huang ZT (2006) A novel one-pot reaction of heterocyclic ketene aminals: synthesis of a small library of tetrahydropyridinone-fused 1,3-diazaheterocycles. Synlett 12:1835–1840. https://doi.org/10.1055/s-2006-947343
- 39.
Yoshida JI, Kataoka K, Horcajada R, Nagaki A (2008) Modern strategies in electroorganic synthesis. Chem Rev 108(7):2265–2299. https://doi.org/10.1021/cr0680843
- 40.
Mohammadi AA, Taheri S, Amini A, Ahdenov R (2018) Synthesis of some new triamide derivatives via Ugi five-component reaction in aqueous solution. Mol Divers. https://doi.org/10.1007/s11030-018-9846-z
- 41.
Mohammadi AA, Taheri S, Amouzegar A, Ahdenov R, Halvagar MR, Sadr AS (2017) Diastereoselective synthesis and molecular docking studies of novel fused tetrahydropyridine derivatives as new inhibitors of HIV protease. J Mol Struct 1139:166–174. https://doi.org/10.1016/j.molstruc.2017.03.029
- 42.
Azizian J, Mohammadi AA, Karimi AE, Mohammadizadeh MR (2005) A stereoselective three-component reaction: KAl(SO4)2·12H2O, an efficient and reusable catalyst for the one-pot synthesis of cis-isoquinolonic acids. J Org Chem 70(1):350–352. https://doi.org/10.1021/jo049138g
- 43.
Makarem S, Fakhari AR, Mohammadi AA (2012) Electro-organic synthesis of nanosized particles of 3-hydroxy-3-(1H-indol-3-yl)indolin-2-one derivatives. Monatsh Chem 143(8):1157–1160. https://doi.org/10.1007/s00706-011-0693-1
- 44.
Makarem S, Fakhari AR, Mohammadi AA (2012) Electro-organic synthesis of nanosized particles of 2-amino-pyranes. Ind Eng Chem Res 51(5):2200–2204. https://doi.org/10.1021/ie200997b
- 45.
Makarem S, Mohammadi AA, Fakhari AR (2008) A multi-component electro-organic synthesis of 2-amino-4H-chromenes. Tetrahedron Lett 49(50):7194–7196. https://doi.org/10.1016/j.tetlet.2008.10.006
- 46.
Sayyar R, Makarem S, Mirza B (2019) Organic electrosynthesis as a new facile and green method for one-pot synthesis of nanosized particles of octahydro-imidazo[1,2-a]quinolin-6-one derivatives via a multicomponent reaction. J Heterocycl Chem 56(6):1839–1843. https://doi.org/10.1002/jhet.3562
- 47.
Makarem S, Fakhari AR, Mohammadi AA (2015) Electro-organic synthesis: an efficient method for the preparation of nanosized particles of phthalazine derivatives via one-pot multicomponent reactions. Anal Bioanal Chem Res 2(2):85–89. https://doi.org/10.22036/abcr.2015.10300
- 48.
Mohammadi AA, Makarem S, Ahdenov R, Notash NA (2019) Green pseudo-multicomponent synthesis of some new spirocyclopropane derivatives via electro-catalyzed reaction. Mol Divers. https://doi.org/10.1007/s11030-019-09979-8
- 49.
Movahed SK, Dabiri M, Bazgir A (2013) An efficient one-pot four-component synthesis of functionalized imidazo[1,2-a]pyridines. Helv Chim Acta 96(3):525–532. https://doi.org/10.1002/hlca.201200231
Author information
Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Asghariganjeh, M.R., Mohammadi, A.A., Tahanpesar, E. et al. Electro-organic synthesis of tetrahydroimidazo[1,2-a]pyridin-5(1H)-one via a multicomponent reaction. Mol Divers 25, 509–516 (2021). https://doi.org/10.1007/s11030-019-10029-6
Received:
Accepted:
Published:
Issue Date:
Keywords
- Electro-organic synthesis
- Imidazo[1,2-a]pyridine
- Multicomponent reaction
- 2-(Nitromethylene)imidazolidine
- Meldrum’s acid