Skip to main content

Advertisement

Log in

Electro-organic synthesis of tetrahydroimidazo[1,2-a]pyridin-5(1H)-one via a multicomponent reaction

  • Short Communication
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Electro-synthesis through a one-pot three-component condensation of corresponding aldehydes, Meldrum’s acid, and 2-(nitromethylene)imidazolidine resulted in a series of novel tetrahydroimidazo[1,2-a]pyridine-5(1H)-one derivatives containing an electronegative pharmacophore (=CNO2). The process was carried out in propanol medium with sodium bromide presented as electrolyte, inside an undivided cell with good to excellent yields. As a powerful entry into fused polycyclic structures related to bioactive heterocycles, this green protocol shows great potential.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

References

  1. Kollmeyer WD, Flattum RF, Foster JP, Powell JE, Schroeder ME, Soloway SB (1999) Discovery of the nitromethylene heterocycle insecticides. In: Yamamoto I, Casida JE (eds) Nicotinoid insecticides and the nicotinic acetylcholine receptor. Springer, Tokyo, pp 71–89. https://doi.org/10.1007/978-4-431-67933-2_3

    Chapter  Google Scholar 

  2. Nauen R, Denholm I (2005) Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Arch Insect Biochem Physiol 58(4):200–215. https://doi.org/10.1002/arch.20043

    Article  CAS  PubMed  Google Scholar 

  3. Rauch N, Nauen R (2003) Identification of biochemical markers linked to neonicotinoid cross resistance in Bemisia tabaci (Hemiptera: Aleyrodidae). Arch Insect Biochem Physiol 54(4):165–176. https://doi.org/10.1002/arch.10114

    Article  CAS  PubMed  Google Scholar 

  4. Langer SZ, Arbilla S, Benavides J, Scatton B (1990) Zolpidem and alpidem: two imidazopyridines with selectivity for omega 1- and omega 3-receptor subtypes. Adv Biochem Psychopharmacol 46:61–72

    CAS  PubMed  Google Scholar 

  5. Ueda T, Mizushige K, Yukiiri K, Takahashi T, Kohno M (2003) Improvement of cerebral blood flow by olprinone, a phosphodiesterase-3 inhibitor, in mild heart failure. Cerebrovasc Dis 16(4):396–401. https://doi.org/10.1159/000072563

    Article  CAS  PubMed  Google Scholar 

  6. Swainston Harrison T, Keating GM (2005) Zolpidem: a review of its use in the management of insomnia. CNS Drugs 19(1):65–89. https://doi.org/10.2165/00023210-200519010-00008

    Article  PubMed  Google Scholar 

  7. Martínez-Urbina MA, Zentella A, Vilchis-Reyes MA, Guzmán A, Vargas O, Ramírez Apan MT, Ventura Gallegos JL, Díaz E (2010) 6-Substituted 2-(N-trifluoroacetylamino)imidazopyridines induce cell cycle arrest and apoptosis in SK-LU-1 human cancer cell line. Eur J Med Chem 45(3):1211–1219. https://doi.org/10.1016/j.ejmech.2009.11.049

    Article  CAS  PubMed  Google Scholar 

  8. Mavel S, Renou JL, Galtier C, Allouchi H, Snoeck R, Andrei G, De Clercq E, Balzarini J, Gueiffier A (2002) Influence of 2-substituent on the activity of imidazo[1,2-a] pyridine derivatives against human cytomegalovirus. Bioorg Med Chem 10(4):941–946. https://doi.org/10.1016/S0968-0896(01)00347-9

    Article  CAS  PubMed  Google Scholar 

  9. Kaminski JJ, Doweyko AM (1997) Antiulcer agents. 6. Analysis of the in vitro biochemical and in vivo gastric antisecretory activity of substituted imidazo[1,2-a]pyridines and related analogues using comparative molecular field analysis and hypothetical active site lattice methodologies. J Med Chem 40(4):427–436. https://doi.org/10.1021/jm950700s

    Article  CAS  PubMed  Google Scholar 

  10. Saxena AK, Schaper KJ (2006) QSAR analysis of the time- and dose-dependent anti-inflammatory in vivo activity of substituted imidazo[1,2-a]pyridines using artificial neural networks. QSAR Comb Sci 25(7):590–597. https://doi.org/10.1002/qsar.200510175

    Article  CAS  Google Scholar 

  11. Bollini M, Casal JJ, Alvarez DE, Boiani L, González M, Cerecetto H, Bruno AM (2009) New potent imidazoisoquinolinone derivatives as anti-Trypanosoma cruzi agents: biological evaluation and structure–activity relationships. Bioorg Med Chem 17(4):1437–1444. https://doi.org/10.1016/j.bmc.2009.01.011

    Article  CAS  PubMed  Google Scholar 

  12. Wiegand MH (2008) Antidepressants for the treatment of insomnia: a suitable approach? Drugs 68(17):2411–2417. https://doi.org/10.2165/0003495-200868170-00001

    Article  CAS  PubMed  Google Scholar 

  13. Rupert KC, Henry JR, Dodd JH, Wadsworth SA, Cavender DE, Olini GC, Fahmy B, Siekierka JJ (2003) Imidazopyrimidines, potent inhibitors of p38 MAP kinase. Bioorg Med Chem Lett 13(3):347–350. https://doi.org/10.1016/S0960-894X(02)01020-X

    Article  CAS  PubMed  Google Scholar 

  14. Rival Y, Grassy G, Michel G (1992) Synthesis and antibacterial activity of some imidazo[l,2-a]pyrimidine derivatives. Chem Pharm Bull 40(5):1170–1176. https://doi.org/10.1248/cpb.40.1170

    Article  CAS  Google Scholar 

  15. Chaouni-Benabdallah A, Galtier C, Allouchi H, Kherbeche A, Debouzy JC, Teulade JC, Chavignon O, Witvrouw M, Pannecouque C, Balzarini J, De Clercq E, Enguehard C, Gueiffier A (2001) Synthesis of 3-nitrosoimidazo[1,2-a]pyridine derivatives as potential antiretroviral agents. Arch Pharm 334(7):224–228. https://doi.org/10.1002/1521-4184(200107)334:7%3c224:AID-ARDP224%3e3.0.CO;2-7

    Article  CAS  Google Scholar 

  16. Budumuru P, Golagani S, Kantamreddi VSS (2018) Design and synthesis of novel imidazo[1,2-a]pyridine derivatives and their anti-bacterial activity. Asian J Pharm Clin Res 11(8):252–258. https://doi.org/10.22159/ajpcr.2018.v11i8.26241

    Article  CAS  Google Scholar 

  17. An W, Wang W, Yu T, Zhang Y, Miao Z, Meng T, Shen J (2016) Discovery of novel 2-phenyl-imidazo[1,2-a]pyridine analogues targeting tubulin polymerization as antiproliferative agents. Eur J Med Chem 112:367–372. https://doi.org/10.1016/j.ejmech.2016.02.004

    Article  CAS  PubMed  Google Scholar 

  18. Garamvölgyi R, Dobos J, Sipos A, Boros S, Illyés E, Baska F, Kékesi L, Szabadkai I, Szántai-Kis C, Kéri G, Örfi L (2016) Design and synthesis of new imidazo[1,2-a]pyridine and imidazo[1,2-a]pyrazine derivatives with antiproliferative activity against melanoma cells. Eur J Med Chem 108:623–643. https://doi.org/10.1016/j.ejmech.2015.12.001

    Article  CAS  PubMed  Google Scholar 

  19. Fan YH, Li W, Liu DD, Bai MX, Song HR, Xu YN, Lee S, Zhou ZP, Wang J, Ding HW (2017) Design, synthesis, and biological evaluation of novel 3-substituted imidazo[1,2-a]pyridine and quinazolin-4(3H)-one derivatives as PI3Kα inhibitors. Eur J Med Chem 139:95–106. https://doi.org/10.1016/j.ejmech.2017.07.074

    Article  CAS  PubMed  Google Scholar 

  20. Allahabadi E, Ebrahimi S, Soheilizad M, Khoshneviszadeh M, Mahdavi M (2017) Copper-catalyzed four-component synthesis of imidazo[1,2-a]pyridines via sequential reductive amination, condensation, and cyclization. Tetrahedron Lett 58(2):121–124. https://doi.org/10.1016/j.tetlet.2016.11.081

    Article  CAS  Google Scholar 

  21. Devi N, Singh D, Kaur G, Mor S, Putta VPRK, Polina S, Malakar CC, Singh V (2017) In(OTf)3 assisted synthesis of β-carboline C-3 tethered imidazo[1,2-a]azine derivatives. New J Chem 41(3):1082–1093. https://doi.org/10.1039/c6nj03210a

    Article  CAS  Google Scholar 

  22. Cui Z, Zhu B, Li X, Cao H (2018) Access to sulfonylated furans or imidazo[1,2-: A] pyridines via a metal-free three-component, domino reaction. Org Chem Front 5(14):2219–2223. https://doi.org/10.1039/c8qo00443a

    Article  CAS  Google Scholar 

  23. Reynoso Lara JE, Salgado-Zamora H, Bazin MA, Campos-Aldrete ME, Marchand P (2018) Design and synthesis of imidazo[1,2-a]pyridines with carboxamide group substitution and in silico evaluation of their interaction with a LuxR-type quorum sensing receptor. J Heterocycl Chem 55(5):1101–1111. https://doi.org/10.1002/jhet.3140

    Article  CAS  Google Scholar 

  24. Dömling A (2006) Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev 106(1):17–89. https://doi.org/10.1021/cr0505728

    Article  CAS  PubMed  Google Scholar 

  25. Karimi AR, Sedaghatpour F (2010) Novel mono- and bis(spiro-2-amino-4 H -pyrans): alum-catalyzed reaction of 4-hydroxycoumarin and malononitrile with isatins, quinones, or ninhydrin. Synthesis 10:1731–1735. https://doi.org/10.1055/s-0029-1219748

    Article  CAS  Google Scholar 

  26. Alizadeh A, Zohreh N (2012) A unique approach to catalyst-free, one-pot synthesis of spirooxindole-pyrazolines. Synlett 3:428–432. https://doi.org/10.1055/s-0031-1290322

    Article  CAS  Google Scholar 

  27. Wang R, Liu ZQ (2013) Ugi multicomponent reaction product: the inhibitive effect on DNA oxidation depends upon the isocyanide moiety. J Org Chem 78(17):8696–8704. https://doi.org/10.1021/jo401426n

    Article  CAS  PubMed  Google Scholar 

  28. Yavari I, Pashazadeh R, Hosseinpour R, Ghanbari E (2013) Nef-isocyanide adducts as useful synthons in a novel synthesis of functionalized 5-imino-2-thioxothiazolidines. Tetrahedron Lett 54(22):2785–2787. https://doi.org/10.1016/j.tetlet.2013.03.041

    Article  CAS  Google Scholar 

  29. Akbarzadeh R, Amanpour T, Bazgir A (2014) Synthesis of 3-oxo-1,4-diazepine-5-carboxamides and 6-(4-oxo-chromen-3-yl)-pyrazinones via sequential Ugi 4CC/Staudinger/intramolecular nucleophilic cyclization and Ugi 4CC/Staudinger/aza-Wittig reactions. Tetrahedron 70(43):8142–8147. https://doi.org/10.1016/j.tet.2014.07.102

    Article  CAS  Google Scholar 

  30. Shaabani A, Hooshmand SE (2016) Isocyanide and Meldrum’s acid-based multicomponent reactions in diversity-oriented synthesis: from a serendipitous discovery towards valuable synthetic approaches. RSC Adv 6(63):58142–58159. https://doi.org/10.1039/c6ra11701e

    Article  CAS  Google Scholar 

  31. Pair E, Berini C, Noël R, Sanselme M, Levacher V, Brière JF (2014) Organocatalysed multicomponent synthesis of pyrazolidinones: Meldrum’s acid approach. Chem Commun 50(71):10218–10221. https://doi.org/10.1039/c4cc04852k

    Article  CAS  Google Scholar 

  32. Lipson VV, Gorobets NY (2009) One hundred years of Meldrum’s acid: advances in the synthesis of pyridine and pyrimidine derivatives. Mol Divers 13(4):399–419. https://doi.org/10.1007/s11030-009-9136-x

    Article  CAS  PubMed  Google Scholar 

  33. Huang CH, Liu YL (2019) The Michael addition reaction of Meldrum’s acid (MA): an effective route for the preparation of reactive precursors for MA-based thermosetting resins. Polym Chem 10(15):1873–1881. https://doi.org/10.1039/c8py01643g

    Article  CAS  Google Scholar 

  34. Krylov CS, Komogortsev AN, Lichitsky BV, Fakhrutdinov AN, Dudinov AA, Krayushkin MM (2019) Three-component condensation of 4-imino-1-phenylimidazolidin-2-one with aldehydes and Meldrum’s acid: synthesis of imidazo[4,5-b]pyridine-2,5(4H,6H)-diones and 5-substituted 1-phenylhydantoins. Chem Heterocycl Compd 55(9):851–855. https://doi.org/10.1007/s10593-019-02548-9

    Article  CAS  Google Scholar 

  35. Lichitsky BV, Tretyakov AD, Komogortsev AN, Mityanov VS, Dudinov AA, Gorbunov YO, Daeva ED, Krayushkin MM (2019) Synthesis of substituted benzofuran-3-ylacetic acids based on three-component condensation of polyalkoxyphenols, arylglyoxals and Meldrum’s acid. Mendeleev Commun 29(5):587–588. https://doi.org/10.1016/j.mencom.2019.09.037

    Article  CAS  Google Scholar 

  36. Suresh M, Kumari A, Singh RB (2019) A transition metal free expedient approach for the C[dbnd]C bond cleavage of arylidene Meldrum’s acid and malononitrile derivatives. Tetrahedron. https://doi.org/10.1016/j.tet.2019.130573

    Article  Google Scholar 

  37. Mishra S, Aponick A (2019) Lactone synthesis by enantioselective orthogonal tandem catalysis. Angew Chem Int Ed 58(28):9485–9490. https://doi.org/10.1002/anie.201904438

    Article  CAS  Google Scholar 

  38. Yu CY, Yang PH, Zhao MX, Huang ZT (2006) A novel one-pot reaction of heterocyclic ketene aminals: synthesis of a small library of tetrahydropyridinone-fused 1,3-diazaheterocycles. Synlett 12:1835–1840. https://doi.org/10.1055/s-2006-947343

    Article  CAS  Google Scholar 

  39. Yoshida JI, Kataoka K, Horcajada R, Nagaki A (2008) Modern strategies in electroorganic synthesis. Chem Rev 108(7):2265–2299. https://doi.org/10.1021/cr0680843

    Article  CAS  PubMed  Google Scholar 

  40. Mohammadi AA, Taheri S, Amini A, Ahdenov R (2018) Synthesis of some new triamide derivatives via Ugi five-component reaction in aqueous solution. Mol Divers. https://doi.org/10.1007/s11030-018-9846-z

    Article  PubMed  Google Scholar 

  41. Mohammadi AA, Taheri S, Amouzegar A, Ahdenov R, Halvagar MR, Sadr AS (2017) Diastereoselective synthesis and molecular docking studies of novel fused tetrahydropyridine derivatives as new inhibitors of HIV protease. J Mol Struct 1139:166–174. https://doi.org/10.1016/j.molstruc.2017.03.029

    Article  CAS  Google Scholar 

  42. Azizian J, Mohammadi AA, Karimi AE, Mohammadizadeh MR (2005) A stereoselective three-component reaction: KAl(SO4)2·12H2O, an efficient and reusable catalyst for the one-pot synthesis of cis-isoquinolonic acids. J Org Chem 70(1):350–352. https://doi.org/10.1021/jo049138g

    Article  CAS  PubMed  Google Scholar 

  43. Makarem S, Fakhari AR, Mohammadi AA (2012) Electro-organic synthesis of nanosized particles of 3-hydroxy-3-(1H-indol-3-yl)indolin-2-one derivatives. Monatsh Chem 143(8):1157–1160. https://doi.org/10.1007/s00706-011-0693-1

    Article  CAS  Google Scholar 

  44. Makarem S, Fakhari AR, Mohammadi AA (2012) Electro-organic synthesis of nanosized particles of 2-amino-pyranes. Ind Eng Chem Res 51(5):2200–2204. https://doi.org/10.1021/ie200997b

    Article  CAS  Google Scholar 

  45. Makarem S, Mohammadi AA, Fakhari AR (2008) A multi-component electro-organic synthesis of 2-amino-4H-chromenes. Tetrahedron Lett 49(50):7194–7196. https://doi.org/10.1016/j.tetlet.2008.10.006

    Article  CAS  Google Scholar 

  46. Sayyar R, Makarem S, Mirza B (2019) Organic electrosynthesis as a new facile and green method for one-pot synthesis of nanosized particles of octahydro-imidazo[1,2-a]quinolin-6-one derivatives via a multicomponent reaction. J Heterocycl Chem 56(6):1839–1843. https://doi.org/10.1002/jhet.3562

    Article  CAS  Google Scholar 

  47. Makarem S, Fakhari AR, Mohammadi AA (2015) Electro-organic synthesis: an efficient method for the preparation of nanosized particles of phthalazine derivatives via one-pot multicomponent reactions. Anal Bioanal Chem Res 2(2):85–89. https://doi.org/10.22036/abcr.2015.10300

    Article  CAS  Google Scholar 

  48. Mohammadi AA, Makarem S, Ahdenov R, Notash NA (2019) Green pseudo-multicomponent synthesis of some new spirocyclopropane derivatives via electro-catalyzed reaction. Mol Divers. https://doi.org/10.1007/s11030-019-09979-8

    Article  PubMed  Google Scholar 

  49. Movahed SK, Dabiri M, Bazgir A (2013) An efficient one-pot four-component synthesis of functionalized imidazo[1,2-a]pyridines. Helv Chim Acta 96(3):525–532. https://doi.org/10.1002/hlca.201200231

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Asghar Mohammadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 9978 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asghariganjeh, M.R., Mohammadi, A.A., Tahanpesar, E. et al. Electro-organic synthesis of tetrahydroimidazo[1,2-a]pyridin-5(1H)-one via a multicomponent reaction. Mol Divers 25, 509–516 (2021). https://doi.org/10.1007/s11030-019-10029-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-10029-6

Keywords

Navigation