Expedient synthesis of novel antibacterial hydrazono-4-thiazolidinones under catalysis of a natural-based binary ionic liquid

Abstract

A library of pyran-2H-one-3-ylmethylidene and chromene-2H-one-3-ylmethylidene derivatives of the titled heterocyclic framework was synthesized from 3-acyl-4-hydroxypyran/chromene-2H-one via sequential reaction with thiosemicarbazide and dialkyl acetylenedicarboxylates. The syntheses were carried out under efficient catalysis of a new binary ionic liquid mixture [l-prolinium chloride][1-methylimidazolium-3-sulfonate] in one pot and solvent-free conditions. Calculations based on density functional theory displayed that the barrier energy for interconversion of the two possible diastereomeric isomers of each product is less than the thermal energy of molecules at room temperature, as only one product can be resolved from a given reaction mixture. This seems to be the case for the previously reported hydrazonothiazolidines. The binary ionic liquid mixture melts at near room temperature and can be considered as a solution of HCl in 1:1 mixture of two zwitterionic species. It proved to be more efficient than its constituents in catalyzing the above synthesis in one-pot operation. Some of the synthesized products have shown pronounced antibacterial activities. The ionic liquid is virtually stable in air and moisture, as can be retrieved several times without appreciable decrease in its catalytic activity.

Graphic abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Scheme 4
Scheme 5

Abbreviations

IL:

Ionic liquid

BIL:

Binary ionic liquid

MImS:

3-Methylimidazolium-1-sulfonate

[MSIm]Cl:

1-Methyl-3-sulfonylimidazolium chloride

BMIm:

1-Butyl-3-methylimidazolium

LPC:

l-Prolinium chloride

DMSO-d 6 :

Hexadeuterated dimethylsulfoxide

p-TSA:

para-Toluenesulfonic acid

DMAD:

Dimethylacetylenedicarboxylate

DFT:

Density functional theory

References

  1. 1.

    Swain CG, Ohno A, Roe DK, Brown R, Maugh T II (1967) Tetrahexylammonium benzoate, a liguid salt at 25.degree., a solvent for kinetics or electrochemistry. J Am Chem Soc 89:2648–2649. https://doi.org/10.1021/ja00987a025

    CAS  Article  Google Scholar 

  2. 2.

    Boon JA, Levisky JA, Pflug JL, Wilkes JS (1986) Friedel–Crafts reactions in ambient-temperature molten salts. J Org Chem 51:480–483. https://doi.org/10.1021/jo00354a013

    CAS  Article  Google Scholar 

  3. 3.

    Singh H, Kumari S, Khurana JM (2014) A new green approach for the synthesis of 12-aryl-8,9,10,12-tetrahydrobenzo[a]xanthene-11-one derivatives using task specific acidic ionic liquid [NMP]H2PO4. Chin Chem Lett 25:1336–1340. https://doi.org/10.1016/j.cclet.2014.05.014

    CAS  Article  Google Scholar 

  4. 4.

    Tawfik SM (2016) Ionic liquids based gemini cationic surfactants as corrosion inhibitors for carbon steel in hydrochloric acid solution. J Mol Liq 216:624–635. https://doi.org/10.1016/j.molliq.2016.01.066

    CAS  Article  Google Scholar 

  5. 5.

    Yadav JS, Reddy BVS, Baishya G, Reddy KV, Narsaiah AV (2005) Conjugate addition of indoles to α, β-unsaturated ketones using Cu(OTf)2 immobilized in ionic liquids. Tetrahedron 61:9541–9544. https://doi.org/10.1016/j.tet.2005.07.095

    CAS  Article  Google Scholar 

  6. 6.

    Rad-Moghadam K, Azimi SC (2012) Mg(BF4)2 doped in [BMIm][BF4]: a homogeneous ionic liquid-catalyst for efficient synthesis of 1,8-dioxo-octahydroxanthenes, decahydroacridines and 14-aryl-14H-dibenzo[a, j]xanthenes. J Mol Catal A Chem 363–364:465–469. https://doi.org/10.1016/j.molcata.2012.07.026

    CAS  Article  Google Scholar 

  7. 7.

    Toorchi Roudsari S, Rad-Moghadam K (2018) A sulfonating ionic liquid for one-pot pseudo four-component synthesis of novel 3-chlorosulfonyl-δ-sultones: a novel class of fluorescent compounds. Tetrahedron 74:4047–4052. https://doi.org/10.1016/j.tet.2018.06.012

    CAS  Article  Google Scholar 

  8. 8.

    Rad-Moghadam K, Mousazadeh Hassani SAR, Toorchi Roudsari S (2016) N-methyl-2-pyrrolidonium chlorosulfonate: an efficient ionic-liquid catalyst and mild sulfonating agent for one-pot synthesis of δ-sultones. J Mol Liq 218:275–280. https://doi.org/10.1016/j.molliq.2016.02.082

    CAS  Article  Google Scholar 

  9. 9.

    Vekariya RL (2017) A review of ionic liquids: applications towards catalytic organic transformations. J Mol Liq 227:44–60. https://doi.org/10.1016/j.molliq.2016.11.123

    CAS  Article  Google Scholar 

  10. 10.

    Zhang X, Li X, Fan X, Wang X, Li D, Qu G, Wang J (2009) Ionic liquid promoted preparation of 4H-thiopyran and pyrimidine nucleoside-thiopyran hybrids through one-pot multi-component reaction of thioamide. Mol Divers 13:57. https://doi.org/10.1007/s11030-008-9098-4

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Khazaei A, Zolfigol MA, Moosavi-Zare AR, Afsar J, Zare A, KhakyzadehV Beyzavi MH (2013) Synthesis of hexahydroquinolines using the new ionic liquid sulfonic acid functionalized pyridinium chloride as a catalyst. Chin J Catal 34:1936–1944. https://doi.org/10.1016/S1872-2067(12)60678-0

    CAS  Article  Google Scholar 

  12. 12.

    Rad-Moghadam K, Sharifi-Kiasaraie M, Taheri-Amlashi H (2010) Synthesis of symmetrical and unsymmetrical 3,3-di(indolyl)indolin-2-ones under controlled catalysis of ionic liquids. Tetrahedron 66:2316–2321. https://doi.org/10.1016/j.tet.2010.02.017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Hayes R, Warr GG, Atkin R (2015) Structure and nanostructure in ionic liquids. Chem Rev 115:6357–6426. https://doi.org/10.1021/cr500411q

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Tokuda H, Hayamizu K, Ishii K, Susan MABH, Watanabe M (2005) Physicochemical properties and structures of room temperature ionic liquids. 2. Variation of alkyl chain length in imidazolium cation. J Phys Chem B 109:6103–6110. https://doi.org/10.1021/jp044626d

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Thomazeau C, Oliver-Bourbigou H, Magna L, Luts S, Gilbert B (2003) Determination of an acidic scale in room temperature ionic liquids. J Am Chem Soc 125:5264–5265. https://doi.org/10.1021/ja0297382

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Hagiwara R, Ito Y (2000) Room temperature ionic liquids of alkylimidazolium cations and fluoroanions. J Fluor Chem 105:221–227. https://doi.org/10.1016/S0022-1139(99)00267-5

    CAS  Article  Google Scholar 

  17. 17.

    Xiao Y, Huang X (2018) The physicochemical properties of a room-temperature liquidus binary ionic liquid mixture of [HNMP][CH3SO3]/[Bmim]Cl and its application for fructose conversion to 5-hydroxymethylfurfural. RSC Adv 8:18784–18791. https://doi.org/10.1039/C8RA03604G

    CAS  Article  Google Scholar 

  18. 18.

    Thawarkar S, Khupse ND, Shinde DR, Kumar A (2019) Understanding the behavior of mixtures of protic-aprotic and protic-protic ionic liquids: conductivity, viscosity, diffusion coefficient and ionicity. J Mol Liq 276:986–994. https://doi.org/10.1016/j.molliq.2018.12.024

    CAS  Article  Google Scholar 

  19. 19.

    Kalurazi SY, Rad-Moghadam K, Moradi S (2017) Efficient catalytic application of a binary ionic liquid mixture in the synthesis of novel spiro[4H-pyridine-oxindoles]. New J Chem 41:10291–10298. https://doi.org/10.1039/C7NJ01858D

    Article  Google Scholar 

  20. 20.

    Sone H, Kondo T, Kiryu M, Ishiwata H, Ojika M, Yamada K (1995) Dolabellin, a cytotoxic bisthiazole metabolite from the sea hare dolabella auricularia: structural determination and synthesis. J Org Chem 60:4774–4781. https://doi.org/10.1021/jo00120a021

    CAS  Article  Google Scholar 

  21. 21.

    Sasse F, Sieinmetz H, Heil J, Höfle G, Reichenbach H (2000) Tubulysins, new cytostatic peptides from myxobacteria acting on microtubule. J Antibiot 53:879–885. https://doi.org/10.7164/antibiotics.53.879

    CAS  Article  Google Scholar 

  22. 22.

    Xie W, Wu Y, Zhang J, Mei Q, Zhang Y, Zhu N, Liu R, Zhang H (2018) Design, synthesis and biological evaluations of novel pyridone-thiazole hybrid molecules as antitumor agents. Eur J Med Chem 145:35–40. https://doi.org/10.1016/j.ejmech.2017.12.038

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Archana A, Srivastava VK, Kumar A (2002) Synthesis of newer thiadiazolyl and thiazolidinonyl quinazolin-4(3H)-ones as potential anticonvulsant agents. Eur J Med Chem 37:873–882. https://doi.org/10.1016/S0223-5234(02)01389-2

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Agarwal A, Lata S, Saxena KK, Srivastava VK, Kumar A (2006) Synthesis and anticonvulsant activity of some potential thiazolidinonyl 2-oxo/thiobarbituric acids. Eur J Med Chem 41:1223–1229. https://doi.org/10.1016/j.ejmech.2006.03.029

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Gundlewad GB, Patil BR (2018) Synthesis and evaluation of some novel 2-amino-4-aryl thiazoles for antitubercular activity. J Heterocycl Chem 55:769–774. https://doi.org/10.1002/jhet.3098

    CAS  Article  Google Scholar 

  26. 26.

    Hargrave KD, Hess FK, Oliver JT (1983) N-(4-Substituted-thiazolyl)oxamic acid derivatives, new series of potent, orally active antiallergy agents. J Med Chem 26:1158–1163. https://doi.org/10.1021/jm00362a014

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Ergenc N, Capan G, Günay NS, Özkirimli S, Güngör M, Özbey S, Kendi E (1999) Synthesis and hypnotic activity of new 4-thiazolidinone and 2-thioxo-4,5-imidazolidinedione derivatives. Arch Pharm 332:343–347. https://doi.org/10.1002/(SICI)1521-4184(199910)332:10%3c3C343:AID-ARDP343%3e3E3.0.CO;2-0

    CAS  Article  Google Scholar 

  28. 28.

    Jaen JC, Wise LD, Caprathe BW, Tecle H, Bergmeier S, Humblet CC, Heffner TG, Meltzner LT, Pugsley TA (1990) 4-(1,2,5,6-Tetrahydro-1-alkyl-3-pyridinyl)-2-thiazolamines: a novel class of compounds with central dopamine agonist properties. J Med Chem 33:311–317. https://doi.org/10.1021/jm00163a051

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Saroha M, Khurana JM (2019) Acetic acid mediated regioselective synthesis of 2,4,5-trisubstituted thiazoles by a domino multicomponent reaction. New J Chem 43:8644–8650. https://doi.org/10.1039/C9NJ01717H

    CAS  Article  Google Scholar 

  30. 30.

    Zhang H (2014) A novel one-pot multicomponent enzymatic synthesis of 2,4-disubstituted thiazoles. Catal Lett 144:928–934. https://doi.org/10.1007/s10562-014-1229-1

    CAS  Article  Google Scholar 

  31. 31.

    Nirwan S, Chahal V, Kakkar R (2019) Thiazolidinones: synthesis, reactivity, and their biological applications. J Heterocycl Chem 56:1239–1253. https://doi.org/10.1002/jhet.3514

    CAS  Article  Google Scholar 

  32. 32.

    Lobo HR, Singh BS, Shankarling GS (2012) Lipase and deep eutectic mixture catalyzed efficient synthesis of thiazoles in water at room temperature. Catal Lett 142:1369–1375. https://doi.org/10.1007/s10562-012-0902-5

    CAS  Article  Google Scholar 

  33. 33.

    Goel A, Ram VJ (2009) Natural and synthetic 2H-pyran-2-ones and their versatility in organic synthesis. Tetrahedron 65:7865–7913. https://doi.org/10.1016/j.tet.2009.06.031

    CAS  Article  Google Scholar 

  34. 34.

    Suzuki K, Kuwahara A, Nishikiori T, Nakagawa T (1997) NF00659A1, A2, A3, B1 and B2, novel antitumor antibiotics produced by Aspergillus sp. NF 00659. J Antibiot 50:318–324. https://doi.org/10.7164/antibiotics.50.318

    CAS  Article  Google Scholar 

  35. 35.

    Irschik H, Gerth K, Hofle G, Kohl W, Reichenbach H (1983) The myxopyronins, new inthibitors of bacterial RNA synthesis from myxococcus fulvus (myxobacterales). J Antibiot 36:1651–1658. https://doi.org/10.7164/antibiotics.36.1651

    CAS  Article  Google Scholar 

  36. 36.

    Smyth T, Ramachandran VN, Smyth WF (2009) A study of the antimicrobial activity of selected naturally occurring and synthetic coumarins. Int J Antimicrob Agents 33:421–426. https://doi.org/10.1016/j.ijantimicag.2008.10.022

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Ollinger P, Wolfbeis OS, Junek H (1975) Darstellung, E/Z-isomerie and gehinderte rotation an N-substituierten aminomethylen-chromandionen,-pyrandionen and-pyridindionen. Monatsh Chem 106:963–971. https://doi.org/10.1007/BF00900875

    CAS  Article  Google Scholar 

  38. 38.

    Liao Y-X, Kuo P-Y, Yang D-Y (2003) Efficient synthesis of trisubstituted [1]benzopyrano[4,3-b]pyrrol-4(1H)-one derivatives from 4-hydroxycoumarin. Tetrahedron Lett 44:1599–1602. https://doi.org/10.1016/S0040-4039(03)00012-1

    CAS  Article  Google Scholar 

  39. 39.

    Raghuvanshi DS, Singh KN (2010) An efficient protocol for multicomponent synthesis of spirooxindoles employing l-proline as catalyst at room temperature. J Heterocycl Chem 47:1323–1327. https://doi.org/10.1002/jhet.451

    CAS  Article  Google Scholar 

  40. 40.

    Kiruthika SE, Perumal PT (2014) One-pot four-component approach for the construction of dihydropyridines and dihydropyridinones using amines and activated alkynes. RSC Adv 4:3758–3767. https://doi.org/10.1039/C3RA45850D

    CAS  Article  Google Scholar 

  41. 41.

    Hasaninejad A, Mandegani F (2013) An efficient synthesis of novel spiro[benzo[c]pyrano[3,2-a]phenazines] via domino multi-component reactions using l-proline as a bifunctional organocatalyst. Tetrahedron Lett 54:2791–2794. https://doi.org/10.1016/j.tetlet.2013.03.073

    CAS  Article  Google Scholar 

  42. 42.

    Chd Hurd, Bauer L (1953) Poly-2-amino-4-pentenoic acid and polytryptophan. J Org Chem 18:1440–1448. https://doi.org/10.1021/jo50016a025

    Article  Google Scholar 

  43. 43.

    Mitsui Y, Tsuboi M, Iitaka Y (1969) The crystal structure of Dl-proline hydrochloride. Acta Cryst 25:2182–2192. https://doi.org/10.1107/S0567740869005449

    CAS  Article  Google Scholar 

  44. 44.

    Kumari S, Singh H, Khurana JM (2016) An efficient green approach for the synthesis of novel triazolyl spirocyclic oxindole derivatives via one-pot five component protocol using DBU as catalyst in PEG-400. Tetrahedron Lett 57:3081–3085. https://doi.org/10.1016/j.tetlet.2016.05.084(And the references therein)

    CAS  Article  Google Scholar 

  45. 45.

    Duthaler RO (2003) Proline-catalyzed asymmetric α-amination of aldehydes and ketones: an astonishingly simple access to optically active α-hydrazino carbonyl compounds. Angew Chem Int Ed 42:975–978. https://doi.org/10.1002/anie.200390283

    CAS  Article  Google Scholar 

  46. 46.

    Yavari I, Hosseini N, Moradi L (2008) Efficient synthesis of highly functionalized thiazolidine-4-ones under solvent-Free conditions. Monatsh Chem 139:133–136. https://doi.org/10.1007/s00706-007-0751-x

    CAS  Article  Google Scholar 

Download references

Acknowledgement

Support of this work by the Research Council of University of Guilan is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kurosh Rad-Moghadam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3815 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mirakmahaleh, M.S., Rad-Moghadam, K., Kefayati, H. et al. Expedient synthesis of novel antibacterial hydrazono-4-thiazolidinones under catalysis of a natural-based binary ionic liquid. Mol Divers 25, 109–119 (2021). https://doi.org/10.1007/s11030-019-10028-7

Download citation

Keywords

  • Thiazolidin-4-one
  • Binary ionic liquid
  • 4-Hydroxypyran-2H-one
  • 4-Hydroxychromene-2H-one
  • Homogeneous catalysis