Regioselective and stereoselective synthesis of epithiomethanoiminoindeno[1,2-b]furan-3-carbonitrile: heterocyclic [3.3.3]propellanes

Abstract

Synthesis of heteropropellanes in one step: the reaction between dicyanomethylene-1,3-indanedione (CNIND) and N-substituted-2-(2,4-dinitrophenyl)hydrazinecarbothioamides, furnished (3aR,8bS,Z)-2-amino-9-substituted-10-(2-(2,4-dinitrophenyl)hydrazono)-4-oxo-4H-3a,8b-(epithiomethanoimino)indeno[1,2-b]furan-3-carbonitrile as a type of (2,4-dinitrophenyl)hydrazono[3.3.3]propellanes in good yields as single diastereomers. Structure determination and confirmation of the synthesized products have been achieved using various and modern spectroscopic techniques such as IR, NMR (1H NMR and 13C NMR), mass spectrometry, as well as X-ray crystal analysis. The X-ray structure data cleared that the molecule of 7a was crystalized as monoclinic, space group C2/c (no.15).

Graphic abstract

This is a preview of subscription content, access via your institution.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2

References

  1. 1.

    Wiberg KB (1989) Small ring propellanes. Chem Rev 89:975–983. https://doi.org/10.1021/cr00095a001

    CAS  Article  Google Scholar 

  2. 2.

    Ginsburg D (1975) Propellanes. Structure and reactions. Verlag Chemie, Weinheim, p 272

    Google Scholar 

  3. 3.

    Pihko AJ, Koskinen AMP (2005) Synthesis of propellane-containing natural products. Tetrahedron 61:8769–8807. https://doi.org/10.1016/j.tet.2005.06.013

    CAS  Article  Google Scholar 

  4. 4.

    Dilmaç AM, Spuling E, de Meijere A, Bräse S (2017) Propellanes—from a chemical curiosity to “explosive” materials and natural products. Angew Chem Int Ed Engl 56:5684–5718. https://doi.org/10.1002/anie.201603951

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Debroy P, Lindeman SV, Rathore R (2007) Hexabenzo[4.4.4]propellane: a helical molecular platform for the construction of electroactive materials. Org Lett 9:4091–4094. https://doi.org/10.1021/ol7015466

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Müller B, Bally T, Pappas R, Williams F (2010) Spectroscopic and computational studies on the rearrangement of ionized [1.1.1]propellane and some of its valence isomers: the key role of vibronic coupling. J Am Chem Soc 132:14649–14660. https://doi.org/10.1021/ja106024y

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Nagasea H, Nakajima R, Yamamotoa N, Hirayama S, Iwai T, Nemoto T, Gouda H, Hirono S, Fujii H (2014) Design and synthesis of quinolinopropellane derivatives with selective d opioid receptor agonism. Bioorg Med Chem Lett 24:2851–2854. https://doi.org/10.1016/j.bmcl.2014.04.098

    CAS  Article  Google Scholar 

  8. 8.

    Rey-Carrizo M, Barniol-Xicota M, Ma C, Frigolé-Vivas M, Torres E, Naesens L, Llabrés S, Juárez-Jiménez J, Luque FJ, DeGrado WF, Lamb RA, Pinto LH, Vázquez S (2014) Easily accessible polycyclic amines that inhibit the wild-type and amantadine-resistant mutants of the M2 channel of influenza a virus. J Med Chem 57:5738–5747. https://doi.org/10.1021/jm5005804

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Qian-Cutrone J, Gao Q, Huang S, Klohr SE, Veitch JA, Shu YZ (1994) Arthrinone, a novel fungal metabolite from Arthrinium sp. FA 1744. J Nat Prod 57:1656–1660. https://doi.org/10.1021/np50114a006

    CAS  Article  Google Scholar 

  10. 10.

    Konishi M, Ohkuma H, Tsuno T, Oki T, VanDuyne GD, Clardy J (1990) Crystal and molecular structure of dynemicin A: a novel 1,5-diyn-3-ene antitumor antibiotic. J Am Chem Soc 112:3715–3716. https://doi.org/10.1021/ja00165a097

    CAS  Article  Google Scholar 

  11. 11.

    Chu M, Truumees I, Patel MG, Gullo VP, Puar MS, McPhail AT (1994) Structure of Sch 49209: a novel antitumor agent from the fungus Nattrassia mangiferae. J Org Chem 59:1222–1223. https://doi.org/10.1021/jo00084a052

    CAS  Article  Google Scholar 

  12. 12.

    Tian X, Li L, Hu Y, Zhang H, Liu Y, Chen H, Ding G, Zou Z (2013) Dichrocephones A and B, two cytotoxic sesquiterpenoids with the unique [3.3.3] propellane nucleus skeleton from Dichrocephala benthamii. RSC Adv 3:7880–7883. https://doi.org/10.1039/c3ra23364b

    CAS  Article  Google Scholar 

  13. 13.

    Zhu H, Chen C, Tong Q, Li XN, Yang J, Xue Y, Luo Z, Wang J, Yao G, Zhang Y (2016) Epicochalasines A and B: two bioactive merocytochalasans bearing caged epicoccine dimer units from Aspergillus flavipes. Angew Chem Int Ed Engl 55:3486–3490. https://doi.org/10.1002/anie.201511315

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Humphrey GR, Kuethe JT (2006) Practical methodologies for the synthesis of indoles. Chem Rev 106:2875–2911. https://doi.org/10.1021/cr0505270

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Cacchi S, Fabrizi G (2005) Synthesis and functionalization of indoles through palladium-catalyzed reactions. Chem Rev 105:2873–2920. https://doi.org/10.1021/cr040639b

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Battistuzzi G, Cacchi S, Fabrizi G (2002) Aerobic oxidation of N-alkylamides catalyzed by N-hydroxyphthalimide under mild conditions. Polar and ENTHALPIC EFFECTS. Eur J Org Chem 67:2671–2676. https://doi.org/10.1021/jo016398e

    CAS  Article  Google Scholar 

  17. 17.

    Alizadeh A, Bayat F (2014) Highly convergent one-pot four-component regioselective synthesis of spiro-pyranopyrazoles and oxa-aza-[3.3.3]propellanes. Helv Chim Acta 97:694–700. https://doi.org/10.1002/hlca.201300260

    CAS  Article  Google Scholar 

  18. 18.

    Alizadeh A, Rezvanian A, Zhu LG (2012) Synthesis of heterocyclic [3.3.3]propellanes via a sequential four-component reaction. J Org Chem 77:4385–4390. https://doi.org/10.1021/jo300457m

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Alizadeh A, Bayat F, Zhu LG (2014) Regioselective multicomponent sequential synthesis of oxa-aza[3.3.3]propellanes. Aust J Chem 67:949–952. https://doi.org/10.1071/CH13654

    CAS  Article  Google Scholar 

  20. 20.

    Rezvanian A, Alizadeh A (2012) Powerful approach to synthesis of fused oxa-aza[3.3.3]propellanes via chemoselective sequential MCR in a single pot. Tetrahedron 68:10164–10168. https://doi.org/10.1016/j.tet.2012.09.101

    CAS  Article  Google Scholar 

  21. 21.

    Zhang LJ, Yan CG (2013) One-pot domino reactions for synthesis of heterocyclic[3.3.3]propellanes and spiro[cyclopenta[b]pyridine-4,20-indenes]. Tetrahedron 69:4915–4921. https://doi.org/10.1016/j.tet.2013.04.048

    CAS  Article  Google Scholar 

  22. 22.

    Shin M, Kim MH, Ha T, Jeon J, Chung K, Kim JS, Kim YG (2014) Synthesis of novel 2,4,6,8,10-pentaaza[3.3.3]propellane derivatives. Tetrahedron 70:1617–1620. https://doi.org/10.1016/j.tet.2014.01.024

    CAS  Article  Google Scholar 

  23. 23.

    Shin M, Ha TH, Chung KH, Kim JS, Kim YG (2014) Nitration of 3,7,9,11-tetraoxo-2,4,6,8,10-pentaaza[3.3.3]propellane. Appl. Chem. Eng. 25:188–192. https://doi.org/10.14478/ace.2014.1005

    CAS  Article  Google Scholar 

  24. 24.

    Lee B, Shin M, Seo Y, Kim MH, Lee HR, Kim JS, Chung KH, Yoo D, Kim YG (2018) Synthesis of 2,4,6,8,9,11-hexaaza[3.3.3]propellanes as a new molecular skeleton for explosives. Tetrahedron 74:130–134. https://doi.org/10.1016/j.tet.2017.11.046

    CAS  Article  Google Scholar 

  25. 25.

    Yang DL, Fu L, Li JR, Zhang Q, Shi DX (2016) Synthesis and crystal structure of 10-(4-nitrobenzyl)-3,7,9,11-tetraoxo-2,4,6,8,10-pentaaza[3.3.3]propellane. J Chem Res 40:341–344. https://doi.org/10.3184/174751916X14622819258876

    CAS  Article  Google Scholar 

  26. 26.

    Yavari I, Khajeh-Khezri A, Halvagar MR (2018) A synthesis of thioxo[3.3.3]propellanes from acenaphthoquinone-malononitrile adduct, primary amines and CS2 in waterArab. J Chem 11:188–195. https://doi.org/10.1016/j.arabjc.2017.01.010

    CAS  Article  Google Scholar 

  27. 27.

    Hassan AA, Mohamed NK, Abdel-Haleem LE, Bräse S, Nieger M (2016) Synthesis of new furo-imidazo[3.3.3]propellanes. Curr Org Synth 13:426–431. https://doi.org/10.2174/1570179412666150513003813

    CAS  Article  Google Scholar 

  28. 28.

    Hassan AA, Mohamed SK, Abdel-Latif FF, Mostafa SM, Abdel-Aziz M, Magued JT, Akkurt M (2016) A novel method for the synthesis of furo-imidazo[3.3.3]propellanes from thiocarbonohydrazides. Synlett 27:412–416. https://doi.org/10.1055/s-0035-1560828

    CAS  Article  Google Scholar 

  29. 29.

    Hassan AA, Aly AA, Mohamed NK, El Shaieb KMA, Makhlouf MM, El-SMN Abdelhafez, Bräse S, Nieger M, Dalby KN, Kaoud TS (2019) Design, synthesis, and DNA interaction studies of furo-imidazo[3.3.3]propellane derivatives: potential anticancer agents. J Bioorg Chem 85:585–599. https://doi.org/10.1016/j.bioorg.2019.02.027

    CAS  Article  Google Scholar 

  30. 30.

    Nematpour M, Abedi E (2017) An efficient synthesis of novel sulfonyl[3.3.3]heteropropellanes from sulfonylacetamidines and ninhydrin-malononitrile adduct. J Sulfur Chem 38:229–235. https://doi.org/10.1080/17415993.2017.1290093

    CAS  Article  Google Scholar 

  31. 31.

    Rezvanian A, Alizadeh A, Zhu LG (2012) Chemo- and regioselective 4CR synthesis of oxathiaaza[3.3.3]propellanes via sequential C–S, C–N and C–O bond formation in a single pot. Synlett 23:2526–2530. https://doi.org/10.1055/s-0032-1317181

    CAS  Article  Google Scholar 

  32. 32.

    Hassan AA, Mohamed NK, Makhlouf MM, Bräse S, Nieger M (2015) Synthesis of oxa-aza- and bis-oxathiaaza[3.3.3]propellanes from dicyanomethylene-1,3-indanedione and 2,5-dithiobiureas. Synthesis 47:3036–3042. https://doi.org/10.1055/s-0034-1380447

    CAS  Article  Google Scholar 

  33. 33.

    Hassan AA, El-Shaieb KMA, Abd El-Aal AS, Bräse S, Nieger M (2016) Synthesis of bis-oxathiaaza[3.3.3]propellanes via nucleophilic addition of (1,ω-alkanediyl)bis(N′-organylthio-ureas) on dicyanomethylene-1,3-indanedione. Arkivoc (v): 406–415. https://doi.org/10.24820/ark.5550190.p009.715

  34. 34.

    Hassan AA, Mohamed NK, Aly AA, Tawfeek HN, Hopf H, Bräse S, Nieger M (2019) Convenient diastereoselective synthesis of annulated 3-substituted-(5S*,6S*, Z)-2-(2-(2,4-dinitrophenyl)-hydrazono)-5,6-diphenyl-1,3-thiazinan-4-ones. Mol Divers. https://doi.org/10.1007/s11030-018-09912-5

    Article  PubMed  Google Scholar 

  35. 35.

    Hassan AA, Mohamed NK, Aly AA, Tawfeek HN, Bräse S, Nieger M (2019) Synthesis and crystallographic evaluation of diazenyl- and hydrazothiazoles. [5.5] sigmatropic rearrangement and formation of thiazolium bromide dehydrate. Mol Struct 1176:346–356. https://doi.org/10.1016/j.molstruc.2018.08.106

    CAS  Article  Google Scholar 

  36. 36.

    Junek H, Fischer-Colbrie H, Hermetter A (1977) Synthesen mit Nitrilen, XLVIII. Merocyanine und Oxonole von Phenyl-indanyliden-acetonitrilen. Z. Naturforschung (B) 32b:898–903

  37. 37.

    Christian Reichardt, C (2011) Solvents and solvent effects in organic chemistry, 3 edn. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, p 710. https://onlinelibrary.wiley.com/doi/pdf/10.1002/9783527632220

  38. 38.

    Cipiciani JA, Santini S, Savelli G (1999) Molecular complexes between substituted indoles and tetracyanoethylene. J Chem Soc Faraday Trans I 75:497–502. https://doi.org/10.1039/F19797500497

    Article  Google Scholar 

  39. 39.

    Chatterjee S (1969) Studies of the charge-transfer complexes of 2-dicyanomethyleneindane-1,3-dione. J Chem Soc (B):725–729. https://doi.org/10.1039/j29690000725

  40. 40.

    Sheldrick GM (2015) SHELXT: SHELXT—integrated space-group and crystal-structure-determination. Acta Crystallogr A 71:3–8. https://doi.org/10.1107/S2053273314026370

    CAS  Article  Google Scholar 

  41. 41.

    Sheldrick GM (2015) SHELXL: crystal structure refionement with SHEXL. Acta Crystallogr C 71:3–8. https://doi.org/10.1107/S2053229614024218

    CAS  Article  Google Scholar 

  42. 42.

    Spek AL (2015) PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystallogr C 71:9–18. https://doi.org/10.1107/S2053229614024929

    CAS  Article  Google Scholar 

  43. 43.

    Sheldrick GM (2008) SHELXS: a short history of SHELX. Acta Crystallogr A 64:112–122. https://doi.org/10.1107/S0108767307043930

    CAS  Article  PubMed  Google Scholar 

  44. 44.

    Parson S, Flack HD, Wagner T (2013) Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr B 69:249–259. https://doi.org/10.1107/S2052519213010014

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Alaa A. Hassan is indebted to the AvH-Foundation for the donation of a Shimadzu 408 IR instrument.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alaa A. Hassan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hassan, A.A., Mohamed, N.K., Aly, A.A. et al. Regioselective and stereoselective synthesis of epithiomethanoiminoindeno[1,2-b]furan-3-carbonitrile: heterocyclic [3.3.3]propellanes. Mol Divers 25, 99–108 (2021). https://doi.org/10.1007/s11030-019-10027-8

Download citation

Keywords

  • Annulated compounds
  • Heterocyclization
  • Imine-enamine tautomerism
  • Nucleophilic addition
  • Furothiazolo[3.3.3]propellanes
  • Thiosemicarbazides