Unexpected regio- and stereoselective [4 + 3] cycloaddition reaction of azomethine ylides with benzylidene thiazolidinediones: synthesis of pharmacologically active spiroindoline oxazepine derivatives and theoretical study

Abstract

An unexpected regio- and stereoselective [4 + 3] cycloaddition reaction of azomethine ylides with 5-benzylidenethiazolidine-2,4-diones has been successfully developed for the synthesis of the novel pharmacologically active 4′,5′-dihydro-3′H-spiro[indoline-3,2′-[1, 3] oxazepin]-2-one derivatives in basic condition. Easy purification, high yield, short experimental time and operational simplicity are specific advantages of this protocol. Furthermore, all the synthesized compounds have been evaluated for antioxidant and antibacterial activities. According to the results, most of the synthesized compounds exhibited DPPH radical scavenging activity and nine of them showed antibacterial properties. The reaction mechanism and 1H NMR spectrum have been evaluated by B3LYP/6311G method.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Sayyafi M, Seyyedhamzeh M, Khavasi HR, Bazgir A (2008) One-pot, three-component route to 2H-indazolo[2,1-b]phthalazine-triones. Tetrahedron 64(10):2375–2378. https://doi.org/10.1016/j.tet.2008.01.006

    CAS  Article  Google Scholar 

  2. 2.

    Gao Y, Honzatko RB, Peters RJ (2012) Terpenoid synthase structures: a so far incomplete view of complex catalysis. Nat Prod Rep 29(10):1153–1175. https://doi.org/10.1039/C2NP20059G

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Corey EJ, Ohno M, Mitra RB, Vatakencherry PA (1964) Total Synthesis of Longifolene. J Am Chem Soc 86(3):478–485. https://doi.org/10.1021/ja01057a039

    CAS  Article  Google Scholar 

  4. 4.

    Andrews SP, Ball M, Wierschem F, Cleator E, Oliver S, Högenauer K, Simic O, Antonello A, Hünger U, Smith MD, Ley SV (2007) Total Synthesis of Five Thapsigargins: Guaianolide Natural Products Exhibiting Sub-Nanomolar SERCA Inhibition. Chem Eur J 13(20):5688–5712. https://doi.org/10.1002/chem.200700302

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Pouwer RH, Richard J-A, Tseng C-C, Chen DY-K (2012) Chemical Synthesis of the Englerins. Chem Asian J 7(1):22–35. https://doi.org/10.1002/asia.201100780

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Hoffmann HMR (1984) The Cycloaddition of Allyl Cations to 1,3-Dienes: General Method for the Synthesis of Seven-Membered Carbocycles. New Synthetic Methods (40). Chem Asian J 23 (1):1-19. doi:https://doi.org/10.1002/anie.198400013

  7. 7.

    Harmata M (1997) Intramolecular cycloaddition reactions of allylic cations. Tetrahedron 53(18):6235–6280. https://doi.org/10.1016/S0040-4020(97)00051-3

    CAS  Article  Google Scholar 

  8. 8.

    Lee JC, Jin S-j, Cha JK (1998) Total Synthesis of Colchicine. α-Methoxy-Substituted Oxyallyl [4 + 3] Cycloaddition Approach. The Journal of Organic Chemistry 63 (9):2804-2805. https://doi.org/10.1021/jo980220j

  9. 9.

    Yang W, Yuan C, Liu Y, Mao B, Sun Z, Guo H (2016) [4 + 3] Cycloaddition of Phthalazinium Dicyanomethanides with Azoalkenes Formed in Situ: Synthesis of Triazepine Derivatives. J Org Chem 81(17):7597–7603. https://doi.org/10.1021/acs.joc.6b01296

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Kim S, Kim H, Um K, Lee PH (2017) Synthesis of Azepinoindoles via Rhodium-Catalyzed Formal Aza-[4 + 3] Cycloaddition Reaction of 3-Diazoindolin-2-imines with 1,3-Dienes in One-Pot. J Org Chem 82(18):9808–9815. https://doi.org/10.1021/acs.joc.7b01150

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Mann J (1986) The synthetic utility of oxyallyl cations. Tetrahedron 42(17):4611–4659. https://doi.org/10.1016/S0040-4020(01)82046-9

    CAS  Article  Google Scholar 

  12. 12.

    Harmata M, Bohnert GJ (2003) A 4 + 3 Cycloaddition Approach to the Synthesis of (±)-Sterpurene. Org Lett 5(1):59–61. https://doi.org/10.1021/ol027176l

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Sasaki T, Ishibashi Y, Ohno M (1982) Catalyzed cycloaddition reactions of α-silyloxy-α, β-unsaturated ketone and aldehyde. Tetrahedron Lett 23(16):1693–1696. https://doi.org/10.1016/S0040-4039(00)87192-0

    CAS  Article  Google Scholar 

  14. 14.

    Harmata M, Sharma U (2000) Synthesis and Some Cycloaddition Reactions of 2-(Triisopropylsilyloxy)acrolein. Org Lett 2(17):2703–2705. https://doi.org/10.1021/ol006281x

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Aungst RA, Funk RL (2001) Stereoselective Preparation of (Z)-2-(Trialkylsilyloxy)-2-alkenals by Retrocycloaddition Reactions of 4H-4-Alkyl-5-(trialkylsilyloxy)-1,3-dioxins. Useful Reactants for Lewis Acid Catalyzed [4 + 3] Cyclizations. Org Lett 3 (22):3553-3555. https://doi.org/10.1021/ol016668f

  16. 16.

    Bajajt K, Srivastava VK, Kumar A (2003) Synthesis of 1,5-Benzothia/Oxazepine as Potent Neuroleptic Agents. Indian J Chem B 42:1149–1155

    Google Scholar 

  17. 17.

    Serrano-Wu MH, St. Laurent DR, Chen Y, Huang S, Lam K-R, Matson JA, Mazzucco CE, Stickle TM, Tully TP, Wong HS, Vyas DM, Balasubramanian BN (2002) Sordarin Oxazepine Derivatives as Potent Antifungal Agents. Bioorg Med Chem Lett 12(19):2757–2760. https://doi.org/10.1016/S0960-894X(02)00529-2

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Kubota K, Kurebayashi H, Miyachi H, Tobe M, Onishi M, Isobe Y (2011) Synthesis and structure–activity relationship of tricyclic carboxylic acids as novel anti-histamines. Biorg Med Chem 19(9):3005–3021. https://doi.org/10.1016/j.bmc.2011.03.003

    CAS  Article  Google Scholar 

  19. 19.

    Abdel-Hafez AA, Abdel-Wahab BA (2008) 5-(4-Chlorophenyl)-5,6-dihydro-1,3-oxazepin-7(4H)-one derivatives as lipophilic cyclic analogues of baclofen: Design, synthesis, and neuropharmacological evaluation. Biorg Med Chem 16(17):7983–7991. https://doi.org/10.1016/j.bmc.2008.07.064

    CAS  Article  Google Scholar 

  20. 20.

    Hallinan EA, Hagen TJ, Tsymbalov S, Husa RK, Lee AC, Stapelfeld A, Savage MA (1996) Aminoacetyl Moiety as a Potential Surrogate for Diacylhydrazine Group of SC-51089, a Potent PGE2 Antagonist, and Its Analogs. J Med Chem 39(2):609–613. https://doi.org/10.1021/jm950454k

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Agirbas H, Kemal B, Budak F (2011) Synthesis and structure–antibacterial activity relationship studies of 4-substituted phenyl-4,5-dihydrobenzo[f][1,4]oxazepin-3(2H)-thiones. Med Chem Res 20(8):1170–1180. https://doi.org/10.1007/s00044-010-9457-4

    CAS  Article  Google Scholar 

  22. 22.

    Hajishaabanha F, Shaabani A (2014) Synthesis of oxazepin-quinoxaline bis-heterocyclic scaffolds via an efficient three component synthetic protocol. RSC Advances 4(87):46844–46850. https://doi.org/10.1039/C4RA08486A

    CAS  Article  Google Scholar 

  23. 23.

    Bucher JR, Haseman JK, Herbert RA, Hejtmancik M, Ryan MJ (1998) Toxicity and Carcinogenicity Studies of Oxazepam in the Fischer 344 Rat. Toxicol Sci 42(1):1–12. https://doi.org/10.1006/toxs.1997.2421

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Mohammad A-T, Osman H, Yeap G-Y (2011) 1,3-Oxazepane-4,7-Diones Compounds: 1H and 13C NMR High-Resolution Spectroscopy (1D and 2D) %J International Journal of Spectroscopy. Int J Spectrosc 2011:7. https://doi.org/10.1155/2011/945216

    CAS  Article  Google Scholar 

  25. 25.

    Singh GS, Desta ZY (2012) Isatins As Privileged Molecules in Design and Synthesis of Spiro-Fused Cyclic Frameworks. Chem Rev 112(11):6104–6155. https://doi.org/10.1021/cr300135y

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Yu J, Shi F, Gong L-Z (2011) Brønsted-Acid-Catalyzed Asymmetric Multicomponent Reactions for the Facile Synthesis of Highly Enantioenriched Structurally Diverse Nitrogenous Heterocycles. Acc Chem Res 44(11):1156–1171. https://doi.org/10.1021/ar2000343

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Shanmugam P, Viswambharan B, Madhavan S (2007) Synthesis of Novel Functionalized 3-Spiropyrrolizidine and 3-Spiropyrrolidine Oxindoles from Baylis − Hillman Adducts of Isatin and Heteroaldehydes with Azomethine Ylides via [3 + 2]-Cycloaddition. Org Lett 9(21):4095–4098. https://doi.org/10.1021/ol701533d

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Liu J, Sun H, Liu X, Ouyang L, Kang T, Xie Y, Wang X (2012) Direct construction of novel exo′-selective spiropyrrolidine bisoxindoles via a three-component 1,3-dipolar cycloaddition reaction. Tetrahedron Lett 53(18):2336–2340. https://doi.org/10.1016/j.tetlet.2012.02.099

    CAS  Article  Google Scholar 

  29. 29.

    Zhao Y, Liu L, Sun W, Lu J, McEachern D, Li X, Yu S, Bernard D, Ochsenbein P, Ferey V, Carry J-C, Deschamps JR, Sun D, Wang S (2013) Diastereomeric Spirooxindoles as Highly Potent and Efficacious MDM2 Inhibitors. J Am Chem Soc 135(19):7223–7234. https://doi.org/10.1021/ja3125417

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Bienaymé H, Hulme C, Oddon G, Schmitt P (2000) Maximizing Synthetic Efficiency: Multi-Component Transformations Lead the Way. Chem Eur J 6(18):3321–3329. https://doi.org/10.1002/1521-3765(20000915)6:18%3c3321:aid-chem3321%3e3.0.co;2-a

    Article  PubMed  Google Scholar 

  31. 31.

    Nefzi A, Ostresh JM, Houghten RA (1997) The Current Status of Heterocyclic Combinatorial Libraries. Chem Rev 97(2):449–472. https://doi.org/10.1021/cr960010b

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Thompson LA (2000) Recent applications of polymer-supported reagents and scavengers in combinatorial, parallel, or multistep synthesis. Curr Opin Chem Biol 4(3):324–337. https://doi.org/10.1016/S1367-5931(00)00096-X

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Dömling A (2002) Recent advances in isocyanide-based multicomponent chemistry. Curr Opin Chem Biol 6(3):306–313. https://doi.org/10.1016/S1367-5931(02)00328-9

    Article  PubMed  Google Scholar 

  34. 34.

    Pouramiri B, Moghimi S, Mahdavi M, Nadri H, Moradi A, Tavakolinejad-Kermani E, Firoozpour L, Asadipour A, Foroumadi A (2017) Synthesis and anticholinesterase activity of new substituted benzo[d]oxazole-based derivatives. Chem Biol Drug Des 89(5):783–789. https://doi.org/10.1111/cbdd.12902

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Pouramiri B, Tavakolinejad Kermani E (2016) One-pot, four-component synthesis of new 3,4,7,8-tetrahydro-3,3-dimethyl-11-aryl-2H-pyridazino[1,2-a]indazole-1,6,9(11H)-triones and 2H-indazolo[2,1-b]phthalazine-1,6,11(13H)-triones using an acidic ionic liquid N, N-diethyl-N-sulfoethanammonium chloride ([Et3N–SO3H]Cl) as a highly efficient and recyclable catalyst. Tetrahedron Lett 57(9):1006–1010. https://doi.org/10.1016/j.tetlet.2016.01.074

    CAS  Article  Google Scholar 

  36. 36.

    Shojaei R, Zahedifar M, Mohammadi P, Saidi K, Sheibani H (2019) Novel magnetic nanoparticle supported ionic liquid as an efficient catalyst for the synthesis of spiro [pyrazole-pyrazolo[3,4-b]pyridine]-dione derivatives under solvent free conditions. J Mol Struct 1178:401–407. https://doi.org/10.1016/j.molstruc.2018.10.052

    CAS  Article  Google Scholar 

  37. 37.

    Zahedifar M, Es-haghi A, Zhiani R, Sadeghzadeh SM (2019) Synthesis of benzimidazolones by immobilized gold nanoparticles on chitosan extracted from shrimp shells supported on fibrous phosphosilicate. RSC Adv 9(12):6494–6501. https://doi.org/10.1039/C9RA00481E

    CAS  Article  Google Scholar 

  38. 38.

    Zahedifar M, Sheibani H, Saheb V (2018) Regioselectivity and Reactivity of Intramolecular [2 + 2] Cycloaddition Reactions of Acyl Ketenes: Experimental and Theoretical Studies. Synlett 29(14):1836–1841. https://doi.org/10.1055/s-0037-1610198

    CAS  Article  Google Scholar 

  39. 39.

    da Silva JAV, Modesto-Costa L, de Koning MC, Borges I, França TCC (2018) Theoretical NMR and conformational analysis of solvated oximes for organophosphates-inhibited acetylcholinesterase reactivation. J Mol Struct 1152:311–320. https://doi.org/10.1016/j.molstruc.2017.09.058

    CAS  Article  Google Scholar 

  40. 40.

    Li W, Xu L-l, Xie Q, Chen Y, Lu M-y, Chao B, Wang X-h, Tang Y, Qiu Z-b, Fu W, Lau C (2013) Theoretical and NMR investigations on the conformations of (-)-meptazinol hydrochloride in solution. Mol Simulat 39(13):1065–1069. https://doi.org/10.1080/08927022.2013.794272

    CAS  Article  Google Scholar 

  41. 41.

    Cancelieri NM, Ferreira TR, Vieira IJC, Braz-Filho R, Piló-Veloso D, Alcântara AFdC (2015) Correlations among experimental and theoretical NMR data to determine the absolute stereochemistry of darcyribeirine, a pentacyclic indole alkaloid isolated from Rauvolfia grandiflora. J Mol Struct 1098:76–83. https://doi.org/10.1016/j.molstruc.2015.05.038

    CAS  Article  Google Scholar 

  42. 42.

    Bhaskar G, Arun Y, Balachandran C, Saikumar C, Perumal PT (2012) Synthesis of novel spirooxindole derivatives by one pot multicomponent reaction and their antimicrobial activity. Eur J Med Chem 51:79–91. https://doi.org/10.1016/j.ejmech.2012.02.024

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    El-Hashash MA, Rizk SA (2017) One-pot Synthesis of Novel Spirooxindoles as Antibacterial and Antioxidant Agents. J Heterocycl Chem 54(3):1776–1784. https://doi.org/10.1002/jhet.2758

    CAS  Article  Google Scholar 

  44. 44.

    Kaur M, Singh B, Singh B, Arjuna A (2017) Synthesis and Evaluation of Novel Spiro[oxindole-isoxazolidine] Derivatives as Potent Antioxidants. J Heterocycl Chem 54(2):1348–1354. https://doi.org/10.1002/jhet.2712

    CAS  Article  Google Scholar 

  45. 45.

    Gaussian 09 RA, M. J. Frisch GWT, H. B. Schlegel, G. E. Scuseria,, M. A. Robb JRC, G. Scalmani, V. Barone, B. Mennucci,, G. A. Petersson HN, M. Caricato, X. Li, H. P. Hratchian,, A. F. Izmaylov JB, G. Zheng, J. L. Sonnenberg, M. Hada,, M. Ehara KT, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,, Y. Honda OK, H. Nakai, T. Vreven, J. A. Montgomery, Jr.,, J. E. Peralta FO, M. Bearpark, J. J. Heyd, E. Brothers,, K. N. Kudin VNS, R. Kobayashi, J. Normand,, K. Raghavachari AR, J. C. Burant, S. S. Iyengar, J. Tomasi,, M. Cossi NR, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross,, V. Bakken CA, J. Jaramillo, R. Gomperts, R. E. Stratmann,, O. Yazyev AJA, R. Cammi, C. Pomelli, J. W. Ochterski,, R. L. Martin KM, V. G. Zakrzewski, G. A. Voth,, P. Salvador JJD, S. Dapprich, A. D. Daniels,, O. Farkas JBF, J. V. Ortiz, J. Cioslowski,, and D. J. Fox G, Inc., Wallingford CT, 2009

Download references

Acknowledgements

The authors express appreciation to the University of Jiroft Faculty Research Committee and Jiroft University of Medical Science for supporting this investigation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mahboobeh Zahedifar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 8994 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zahedifar, M., Pouramiri, B., Ezzati Ghadi, F. et al. Unexpected regio- and stereoselective [4 + 3] cycloaddition reaction of azomethine ylides with benzylidene thiazolidinediones: synthesis of pharmacologically active spiroindoline oxazepine derivatives and theoretical study. Mol Divers 25, 29–43 (2021). https://doi.org/10.1007/s11030-019-10022-z

Download citation

Keywords

  • Regioselectivity
  • Spiroindoline oxazepine
  • [4 + 3] Cycloaddition reaction
  • Pharmacologically active
  • Theoretical NMR analysis