Synthesis and biological evaluation of 2-phenyl-4-aminoquinolines as potential antifungal agents

Abstract

A series of 2-phenyl-4-aminoquinolines were designed, synthesized and evaluated for their antifungal activities against three phytopathogenic fungi in vitro. All of the target compounds were fully elucidated by 1H NMR, 13C NMR and HRMS spectra. The results indicated that most of the target compounds demonstrated significant activities against the tested fungi. Among them, compound 6e exhibited more promising inhibitory activities against C. lunata (EC50 = 13.3 μg/mL), P. grisea (EC50 = 14.4 μg/mL) and A. alternate (EC50 = 15.6 μg/mL), superior to azoxystrobin, a commercial agricultural fungicide. The structure–activity relationship (SAR) revealed that the aniline moiety at position 4 of the quinoline scaffold played a key role in the potency of a compound. And the substitution positions of the aniline moiety significantly influenced the activities. These encouraging results yielded a variety of 2-phenylquinolines bearing an aniline moiety acting as promising antifungal agents.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Scheme 1
Fig. 2

References

  1. 1.

    Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484(7393):186–194. https://doi.org/10.1038/nature10947

    CAS  Article  Google Scholar 

  2. 2.

    Bräse S, Encinas A, Keck J, Nising CF (2009) Chemistry and biology of mycotoxins and related fungal metabolites. Chem Rev 109(9):3903–3990. https://doi.org/10.1021/cr050001f

    CAS  Article  Google Scholar 

  3. 3.

    Zhang J, Peng JF, Wang T, Kang Y, Jing S, Zhang ZT (2017) Synthesis and biological evaluation of arylpyrazoles as fungicides against phytopathogenic fungi. Mol Divers 21(2):317–323. https://doi.org/10.1007/s11030-017-9727-x

    CAS  Article  Google Scholar 

  4. 4.

    Wang X, Fu X, Yan J, Wang A, Wang M, Chen M, Yang C, Song Y (2019) Design and synthesis of novel 2-(6-thioxo-1,3,5-thiadiazinan-3-yl)-N’-phenylacethydrazide derivatives as potential fungicides. Mol Divers 23(3):573–583. https://doi.org/10.1007/s11030-018-9891-7

    CAS  Article  Google Scholar 

  5. 5.

    Karekal MR, Biradar V, Bennikallu HMM (2013) Synthesis, characterization, antimicrobial, DNA cleavage, and antioxidant studies of some metal complexes derived from schiff base containing indole and quinoline moieties. Bioinorg Chem Appl 2013:315972. https://doi.org/10.1155/2013/315972

    CAS  Article  Google Scholar 

  6. 6.

    Minocheherhomji FP, Vaidya KK (2016) Potential therapeutic values of quinoline derivatives based on their antibacterial activity. Int J Pharma Bio Sci 7(4):412–415. https://doi.org/10.22376/ijpbs.2016.7.4.b412-415

    CAS  Article  Google Scholar 

  7. 7.

    Emami S, Ghafouri E, Faramarzi MA, Samadi N, Irannejad H, Foroumadi A (2013) Mannich bases of 7-piperazinylquinolones and kojic acid derivatives: synthesis, in vitro antibacterial activity and in silico study. Eur J Med Chem 68:185–191. https://doi.org/10.1016/j.ejmech.2013.07.032

    CAS  Article  Google Scholar 

  8. 8.

    Arafa RK, Hegazy GH, Piazza GA, Abadi AH (2013) Synthesis and in vitro antiproliferative effect of novel quinoline-based potential anticancer agents. Eur J Med Chem 63:826–832. https://doi.org/10.1016/j.ejmech.2013.03.008

    CAS  Article  Google Scholar 

  9. 9.

    Köprülü TK, Ökten S, Tekin Ş, Çakmak O (2019) Biological evaluation of some quinoline derivatives with different functional groups as anticancer agents. J Biochem Mol Toxicol 33(3):e22260. https://doi.org/10.1002/jbt.22260

    CAS  Article  Google Scholar 

  10. 10.

    Vandekerckhove S, Desmet T, Tran HG, de Kock C, Smith PJ, Chibale K, Dhooghe M (2014) Synthesis of halogenated 4-quinolones and evaluation of their antiplasmodial activity. Bioorg Med Chem Lett 24(4):1214–1217. https://doi.org/10.1016/j.bmcl.2013.12.067

    CAS  Article  Google Scholar 

  11. 11.

    Plevová K, Briestenská K, Colobert F, Mistríková J, Milata V, Leroux FR (2015) Synthesis and biological evaluation of new nucleosides derived from trifluoromethoxy-4-quinolones. Tetrahedron Lett 56(36):5112–5115. https://doi.org/10.1016/j.tetlet.2015.07.031

    CAS  Article  Google Scholar 

  12. 12.

    Qu TF, Qu LL, Wang XG, Xu T, Xiao X, Ding M, Deng L, Guo Y (2017) Design, synthesis, and antibacterial activity of novel 8-methoxyquinoline-2-carboxamide compounds containing 1,3,4-thiadiazole moiety. Zeitschrift für Naturforschung C 73(3–4):117–122. https://doi.org/10.1515/znc-2017-0063

    CAS  Article  Google Scholar 

  13. 13.

    Musiol R, Serda M, Hensel-Bielowka S, Polanski J (2010) Quinoline-based antifungals. Curr Med Chem 17(18):1960–1973. https://doi.org/10.2174/092986710791163966

    CAS  Article  Google Scholar 

  14. 14.

    Kouznetsov VV, Meléndez Gómez CM, Derita MG, Svetaz L, del Olmo E, Zacchino SA (2012) Synthesis and antifungal activity of diverse C-2 pyridinyl and pyridinylvinyl substituted quinolines. Bioorg Med Chem 20(21):6506–6512. https://doi.org/10.1016/j.bmc.2012.08.036

    CAS  Article  Google Scholar 

  15. 15.

    Yaakov DB, Shadkchan Y, Albert N, Kontoyiannis DP, Osherov N (2017) The quinoline bromoquinol exhibits broad-spectrum antifungal activity and induces oxidative stress and apoptosis in Aspergillus fumigatus. J Antimicrob Chemother 72(8):2263–2272. https://doi.org/10.1093/jac/dkx117

    CAS  Article  Google Scholar 

  16. 16.

    Fang YM, Zhang RR, Shen ZH, Wu HK, Tan CX, Weng JQ, Xu TM, Liu XH (2018) Synthesis, antifungal activity, and SAR study of some new 6-perfluoropropanyl quinoline derivatives. J Heterocycl Chem 55(1):240–245. https://doi.org/10.1002/jhet.3031

    CAS  Article  Google Scholar 

  17. 17.

    Rahangdale PK, Inam F, Chourasia SS (2018) Quantitative structure activity relationship and biological activity studies of 4-methyl-2-(4-substituted phenyl)quinoline derivatives. Asian J Chem 30(3):479–482. https://doi.org/10.14233/ajchem.2018.20811

    CAS  Article  Google Scholar 

  18. 18.

    Banu S, Bollu R, Naseema M, Gomedhika PM, Nagarapu L, Sirisha K, Kumar CG, Gundasw SK (2018) A novel templates of piperazinyl-1,2-dihydroquinoline-3-carboxylates: synthesis, anti-microbial evaluation and molecular docking studies. Bioorg Med Chem Lett 28(7):1166–1170. https://doi.org/10.1016/j.bmcl.2018.03.007

    CAS  Article  Google Scholar 

  19. 19.

    Salve PS, Alegaon SG, Sriram D (2017) Three-component, one-pot synthesis of anthranilamide Schiff bases bearing 4-aminoquinoline moiety as Mycobacterium tuberculosis gyrase inhibitors. Bioorg Med Chem Lett 27(8):1859–1866. https://doi.org/10.1016/j.bmcl.2017.02.031

    CAS  Article  Google Scholar 

  20. 20.

    Vausselin T, Seron K, Lavie M, Mesalam AA, Lemasson M, Belouzard S, Feneant L, Danneels A, Rouille Y, Cocquerel L, Foquet L, Rosenberg AR, Wychowski C, Meuleman P, Melnyk P, Dubuisson J (2016) Identification of a new benzimidazole derivative as an antiviral against hepatitis C virus. J Virol 90(19):8422–8434. https://doi.org/10.1128/JVI.00404-16

    CAS  Article  Google Scholar 

  21. 21.

    Das P, Deng X, Zhang L, Roth MG, Fontoura BMA, Phillips MA, De Brabander JK (2013) SAR-based optimization of a 4-quinoline carboxylic acid analogue with potent antiviral activity. ACS Med Chem Lett 4(6):517–521. https://doi.org/10.1021/ml300464h

    CAS  Article  Google Scholar 

  22. 22.

    Singh K, Kaur H, Chibale K, Balzarini J (2013) Synthesis of 4-aminoquinoline–pyrimidine hybrids as potent antimalarials and their mode of action studies. Eur J Med Chem 66:314–323. https://doi.org/10.1016/j.ejmech.2013.05.046

    CAS  Article  Google Scholar 

  23. 23.

    Bhat HR, Singh UP, Gahtori P, Ghosh SK, Gogoi K, Prakash A, Singh RK (2013) 4-Aminoquinoline-1,3,5-triazine: design, synthesis, in vitro antimalarial activity and docking studies. New J Chem 37(9):2654–2662. https://doi.org/10.1039/c3nj00317e

    CAS  Article  Google Scholar 

  24. 24.

    Marvania B, Kakadiya R, Christian W, Chen TL, Wu MH, Suman S, Tala K, Lee TC, Shah A, Su TL (2014) The synthesis and biological evaluation of new DNA-directed alkylating agents, phenyl N-mustard-4-anilinoquinoline conjugates containing a urea linker. Eur J Med Chem 83:695–708. https://doi.org/10.1016/j.ejmech.2014.06.066

    CAS  Article  Google Scholar 

  25. 25.

    Abbas SH, Abd El-Hafeez AA, Shoman ME, Montano MM, Hassan HA (2019) New quinoline/chalcone hybrids as anti-cancer agents: design, synthesis, and evaluations of cytotoxicity and PI3 K inhibitory activity. Bioorg Chem 82:360–377. https://doi.org/10.1016/j.bioorg.2018.10.064

    CAS  Article  Google Scholar 

  26. 26.

    Meléndez Gómez CM, Kouznetsov VV, Sortino MA, Álvarez SL, Zacchino SA (2008) In vitro antifungal activity of polyfunctionalized 2-(hetero)arylquinolines prepared through imino Diels-Alder reactions. Bioorg Med Chem 16(17):7908–7920. https://doi.org/10.1016/j.bmc.2008.07.079

    CAS  Article  Google Scholar 

  27. 27.

    Liberto NA, Simoes JB, Silva SdP, da Silva CJ, Modolo LV, de Fatima A, Silva LM, Derita M, Zacchino S, Zuniga OMP, Romanelli GP, Fernandes SA (2017) Quinolines: microwave-assisted synthesis and their antifungal, anticancer and radical scavenger properties. Bioorg Med Chem 25(3):1153–1162. https://doi.org/10.1016/j.bmc.2016.12.023

    CAS  Article  Google Scholar 

  28. 28.

    Mudaliar S, Chikhalia KH, Shah NK (2016) Synthesis of 2-, 3- or 4-phenylsubtituted chalcones based on 4-phenylamino-6-nitro-2-[(E)-2-phenylvinyl]quinoline, evaluation of their antimicrobial and antifungal activity. Lett Drug Des Discovery 13(8):818–823. https://doi.org/10.2174/1570180812666151016205033

    CAS  Article  Google Scholar 

  29. 29.

    Montoya A, Quiroga J, Abonia R, Derita M, Sortino M, Ornelas A, Zacchino S, Insuasty B (2016) Hybrid molecules containing a 7-chloro-4-aminoquinoline nucleus and a substituted 2-pyrazoline with antiproliferative and antifungal activity. Molecules 21(8):969/1–969/19. https://doi.org/10.3390/molecules21080969

    CAS  Article  Google Scholar 

  30. 30.

    Yang R, Ma YN, Huang T, Xie W, Zhang X, Huang GS, Liu XD (2018) Synthesis and antifungal activities of 4-thioquinoline compounds. Chin J Org Chem 38(8):2143–2150. https://doi.org/10.6023/cjoc201801024

    CAS  Article  Google Scholar 

  31. 31.

    Tsai JY, Chang CS, Huang YF, Chen HS, Lin SK, Wong FF, Huang LJ, Kuo SC (2008) Investigation of amination in 4-chloro-2-phenylquinoline derivatives with amide solvents. Tetrahedron 64(51):11751–11755. https://doi.org/10.1016/j.tet.2008.09.100

    CAS  Article  Google Scholar 

  32. 32.

    Pickard AJ, Liu F, Bartenstein TF, Haines LG, Levine KE, Kucera GL, Bierbach U (2014) Redesigning the DNA-targeted chromophore in platinum-acridine anticancer agents: a structure-activity relationship study. Chemistry 20(49):16174–16187. https://doi.org/10.1002/chem.201404845

    CAS  Article  Google Scholar 

  33. 33.

    Yang R, Gao ZF, Zhao JY, Li WB, Zhou L, Miao F (2015) New class of 2-aryl-6-chloro-3,4-dihydroisoquinolinium salts as potential antifungal agents for plant protection: synthesis, bioactivity and structure-activity relationships. J Agric Food Chem 63(7):1906–1914. https://doi.org/10.1021/jf505609z

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (No. 31601670) and the Foundation of Education Department of Sichuan Province (No. 18ZB0079).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Rui Yang or Haiying Du.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 4819 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Du, W., Yuan, H. et al. Synthesis and biological evaluation of 2-phenyl-4-aminoquinolines as potential antifungal agents. Mol Divers 24, 1065–1075 (2020). https://doi.org/10.1007/s11030-019-10012-1

Download citation

Keywords

  • 4-Aminoquinoline
  • Phytopathogenic fungi
  • Antifungal activity
  • Structure–activity relationship