Skip to main content
Log in

Conformational dynamics of \(\alpha \)-conotoxin PnIB in complex solvent systems

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Cone snails are slow-moving animals that secure survival by injecting to their prey a concoction of highly potent and stable neurotoxic peptides called conotoxins. These small toxins (~ 10–30 AA) interact with ion channels and their diverse structures account for various variables such as the environment and the prey of preference. This study probed the conformational space of α-conotoxin PnIB from Conus pennaceus by performing all-atom molecular dynamics simulations on the conotoxin in complex solvent systems of water and octanol. Secondary structure analyses showed a uniform conformation for the pure (C100Oc, C100W) and minute (C95Oc, C5Oc) systems. In C50Oc, however, structural changes were observed. The original helices were converted to turns and were shown to happen simultaneously with the elongation of the helix and shortening of end-to-end distance. The transitions complement the orientation of the peptide at the interface. The shift to the broken helix conformation is marked by the rearrangement of solvent molecules to a framework that favors the accumulation of water molecules at residues 6–11 of the H2 region. This promotes specific protein–solvent interactions that facilitate secondary structure transitions. As PnIB has shown favorable binding toward neuronal nicotinic acetylcholine receptors, this study may provide insights on this conotoxin’s therapeutic potential.

Graphic abstract

Description: Structural changes in PnIB are accompanied by a simultaneous change in solvent density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lebbe E, Peigneur S, Wijesekara I, Tytgat J (2014) Conotoxins targeting nicotinic acetylcholine receptors: an overview. Mar Drugs 12(5):2970–3004. https://doi.org/10.3390/md12052970

    Article  CAS  Google Scholar 

  2. Fry BG, Roelants K, Champagne DE, Scheib H, Tyndall JD, King GF, Nevalainen TJ, Norman JA, Lewis RJ, Norton RS, Renjifo C, de la Vega RCR (2009) The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annu Rev Genom Hum Genet 10(1):483–511. https://doi.org/10.1146/annurev.genom.9.081307.164356

    Article  CAS  Google Scholar 

  3. Mouhat S, Jouirou B, Mosbah A, Waard MD, Sabatier JM (2004) Diversity of folds in animal toxins acting on ion channels. Biochem J 378(3):717–726. https://doi.org/10.1042/bj20031860

    Article  CAS  Google Scholar 

  4. Marí F, Tytgat J (2010) Natural peptide toxins. In: Liu HWB, Mander L (eds) Comprehensive natural products II. Elsevier, Oxford, pp 511–538

    Chapter  Google Scholar 

  5. Olivera BM, Imperial JS, Concepcion GP (2013) Chapter 61—Snail peptides. In: Kastin AJ (ed) Handbook of biologically active peptides, 2nd edn. Academic Press, Boston, pp 437–450

    Chapter  Google Scholar 

  6. Olivera B, Rivier J, Clark C, Ramilo C, Corpuz G, Abogadie F, Mena E, Woodward HD, Cruz L (1990) Diversity of conus neuropeptides. Science 249(4966):257–263. https://doi.org/10.1126/science.2165278

    Article  CAS  Google Scholar 

  7. Yang J, Zhang S (2011) The radular morphology of Nassariidae (Gastropoda: Caenogastropoda) from China. Chin J Oceanol Limnol 29(5):1023–1032. https://doi.org/10.1007/s00343-011-0079-6

    Article  Google Scholar 

  8. McCleskey EW, Fox AP, Feldman DH, Cruz LJ, Olivera BM, Tsien RW, Yoshikami D (1987) Omega-conotoxin: direct and persistent blockade of specific types of calcium channels in neurons but not muscle. Proc Natl Acad Sci USA 84(12):4327–4331. https://doi.org/10.1073/pnas.84.12.4327

    Article  CAS  Google Scholar 

  9. Mcintosh M, Yoshikami D, Mahe E, Nielsen BD, Rivier JE, Gray WR, Olivera B (1994) A nicotinic acetylcholine receptor ligand of unique specificity, \(\alpha \)-conotoxin ImI. J Biol Chem 269:16733–16739

    CAS  Google Scholar 

  10. McIntosh JM, Santos AD, Olivera BM (1999) Conus peptides targeted to specific nicotinic acetylcholine receptor subtypes. Annu Rev Biochem 68(1):59–88. https://doi.org/10.1146/annurev.biochem.68.1.59

    Article  CAS  Google Scholar 

  11. Davis J, Jones A, Lewis RJ (2009) Remarkable inter- and intra-species complexity of conotoxins revealed by LC/MS. Peptides 30(7):1222–1227. https://doi.org/10.1016/j.peptides.2009.03.019

    Article  CAS  Google Scholar 

  12. Terlau H, Olivera BM (2004) Conus venoms: a rich source of novel ion channel-targeted peptides. Physiol Rev 84(1):41–68. https://doi.org/10.1152/physrev.00020.2003

    Article  CAS  Google Scholar 

  13. Nicke A, Wonnacott S, Lewis RJ (2004) \(\alpha \)-conotoxins as tools for the elucidation of structure and function of neuronal nicotinic acetylcholine receptor subtypes. Eur J Biochem 271(12):2305–2319. https://doi.org/10.1111/j.1432-1033.2004.04145.x

    Article  CAS  Google Scholar 

  14. Azam L, McIntosh JM (2009) Alphaconotoxins as pharmacological probes of nicotinic acetylcholine receptors. Acta Pharmacol Sin 30(6):771–783. https://doi.org/10.1038/aps.2009.47

    Article  CAS  Google Scholar 

  15. Lindstrom J (1997) Nicotinic acetylcholine receptors in health and disease. Mol Neurobiol 15(2):193–222. https://doi.org/10.1007/bf02740634

    Article  CAS  Google Scholar 

  16. Hurst R, Rollema H, Bertrand D (2013) Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacol Ther 137(1):22–54. https://doi.org/10.1016/j.pharmthera.2012.08.012

    Article  CAS  Google Scholar 

  17. Albuquerque EX, Pereira EFR, Alkondon M, Rogers SW (2009) Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev 89(1):73–120. https://doi.org/10.1152/physrev.00015.2008

    Article  CAS  Google Scholar 

  18. Mir R, Karim S, Kamal MA, Wilson CM, Mirza Z (2016) Conotoxins: structure, therapeutic potential and pharmacological applications. Curr Pharm Des 22(5):582–589. https://doi.org/10.2174/1381612822666151124234715

    Article  CAS  Google Scholar 

  19. Layer R, McIntosh J (2006) Conotoxins: therapeutic potential and application. Mar Drugs 4(3):119–142. https://doi.org/10.3390/md403119

    Article  CAS  Google Scholar 

  20. Quiram PA, McIntosh JM, Sine SM (2000) Pairwise interactions between neuronal \(\alpha 7\) acetylcholine receptors and \(\alpha \)-conotoxin PnIB. J Biol Chem 275(7):4889–4896. https://doi.org/10.1074/jbc.275.7.4889

    Article  CAS  Google Scholar 

  21. Hu SH, Gehrmann J, Alewood PF, Craik DJ, Martin JL (1997) Crystal structure at 1.1 Å resolution of \(\alpha \)-conotoxin PnIB: comparison with \(\alpha \)-conotoxins PnIA and GI. Biochemistry 36(38):11323–11330. https://doi.org/10.1021/bi9713052

    Article  CAS  Google Scholar 

  22. Crisma M, Formaggio F, Moretto A, Toniolo C (2006) Peptide helices based on \(\alpha \)-amino acids. Biopolymers 84(1):3–12. https://doi.org/10.1002/bip.20357

    Article  CAS  Google Scholar 

  23. Marechal Y (2007) The hydrogen bond and the water molecule: the physics and chemistry of water, aqueous and bio-media. Elsevier Science, Amsterdam

    Google Scholar 

  24. Smythe ML, Huston SE, Marshall GR (1995) The molten helix: effects of solvation on the \(\alpha \)- to \(3_{10}\)-helical transition. J Am Chem Soc 117(20):5445–5452. https://doi.org/10.1021/ja00125a003

    Article  CAS  Google Scholar 

  25. Nellas RB, Johnson QR, Shen T (2013) Solvent-induced \(\alpha \)- to \(3_{10}\)-helix transition of an amphiphilic peptide. Biochemistry 52(40):7137–7144. https://doi.org/10.1021/bi400537z

    Article  CAS  Google Scholar 

  26. Lindsay RJ, Johnson QR, Evangelista W, Nellas RB, Shen T (2016) DMSO enhanced conformational switch of an interfacial enzyme. Biopolymers 105(12):864–872. https://doi.org/10.1002/bip.22924

    Article  CAS  Google Scholar 

  27. Bellanda M, Mammi S, Geremia S, Demitri N, Randaccio L, Broxterman Q, Kaptein B, Pengo P, Pasquato L, Scrimin P (2007) Solvent polarity controls the helical conformation of short peptides rich in \(\text{ C }^{\alpha }\)-tetrasubstituted amino acids. Chem Eur J 13(2):407–416. https://doi.org/10.1002/chem.200600719

    Article  CAS  Google Scholar 

  28. Karle IL, Flippen-Anderson JL, Gurunath R, Balaram P (1994) Facile transition between \(3_{10}\)- and \(\alpha \)-helix: structures of 8-, 9-, and 10-residue peptides containing the -(Leu-Aib-Ala)\(_{2}\)-Phe-Aib-fragment. Protein Sci 3(9):1547–1555. https://doi.org/10.1002/pro.5560030920

    Article  CAS  Google Scholar 

  29. Dutertre S, Lewis RJ (2004) Computational approaches to understand \(\alpha \)-conotoxin interactions at neuronal nicotinic receptors. Eur J Biochem 271(12):2327–2334. https://doi.org/10.1111/j.1432-1033.2004.04147.x

    Article  CAS  Google Scholar 

  30. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11(8):3696–3713. https://doi.org/10.1021/acs.jctc.5b00255

    Article  CAS  Google Scholar 

  31. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  32. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph 25(2):247–260. https://doi.org/10.1016/j.jmgm.2005.12.005

    Article  CAS  Google Scholar 

  33. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25(9):1157–1174. https://doi.org/10.1002/jcc.20035

    Article  CAS  Google Scholar 

  34. Case D, Babin V, Berryman J, Betz R, Cai QDC, TE Cheatham I, Darden T, Duke R, Gohlke H, Goetz A, Gusarov S, Homeyer N, Janowski P, Kaus J, Kolossvry I, Kovalenko A, Lee T, LeGrand S, Luchko T, Luo R, Madej B, Merz K, Paesani F, Roe D, Roitberg A, Sagui C, Salomon-Ferrer R, Seabra G, Simmerling C, Smith W, Swails J, Walker R, Wang J, Wolf R, Wu X, Kollman P (2014) AMBER 14. University of California, San Francisco

  35. Martínez L, Andrade R, Birgin EG, Martínez JM (2009) PACKMOL: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30(13):2157–2164. https://doi.org/10.1002/jcc.21224

    Article  CAS  Google Scholar 

  36. Martínez JM, Martínez L (2003) Packing optimization for automated generation of complex system’s initial configurations for molecular dynamics and docking. J Comput Chem 24(7):819–825. https://doi.org/10.1002/jcc.10216

    Article  CAS  Google Scholar 

  37. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802. https://doi.org/10.1002/jcc.20289

    Article  CAS  Google Scholar 

  38. Paterlini M, Ferguson DM (1998) Constant temperature simulations using the Langevin equation with velocity Verlet integration. Chem Phys 236(1–3):243–252. https://doi.org/10.1016/s0301-0104(98)00214-6

    Article  CAS  Google Scholar 

  39. Feller SE, Zhang Y, Pastor RW, Brooks BR (1995) Constant pressure molecular dynamics simulation: the Langevin piston method. J Chem Phys 103(11):4613–4621. https://doi.org/10.1063/1.470648

    Article  CAS  Google Scholar 

  40. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103(19):8577–8593. https://doi.org/10.1063/1.470117

    Article  CAS  Google Scholar 

  41. Ryckaert JP, Ciccotti G, Berendsen HJ (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341. https://doi.org/10.1016/0021-9991(77)90098-5

    Article  CAS  Google Scholar 

  42. Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095. https://doi.org/10.1021/ct400341p

    Article  CAS  Google Scholar 

  43. Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12):2577–2637. https://doi.org/10.1002/bip.360221211

    Article  CAS  Google Scholar 

  44. Huston SE, Marshall GR (1994) \(\alpha /3_{10}\)-helix transitions in \(\alpha \)-methylalanine homopeptides: conformational transition pathway and potential of mean force. Biopolymers 34(1):75–90. https://doi.org/10.1002/bip.360340109

    Article  CAS  Google Scholar 

  45. Ramachandran G, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7(1):95–99. https://doi.org/10.1016/s0022-2836(63)80023-6

    Article  CAS  Google Scholar 

  46. Henchman RH, McCammon JA (2002) Extracting hydration sites around proteins from explicit water simulations. J Comput Chem 23(9):861–869. https://doi.org/10.1002/jcc.10074

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the computational support provided by the High Performance Computing (HPC) facility under the Computing and Archiving Research Environment (CoARE) of the Department of Science and Technology - Advanced Science and Technology Institute (DOST-ASTI).

Funding

This work was funded by the Office of the Vice Chancellor for Research and Development (OVCRD) of the University of the Philippines Diliman (Project: 191922 ORG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricky B. Nellas.

Ethics declarations

Conflict of interest

The authors declare that there is no conflicting interest with regard to the published material.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaza, J.T., Sampaco, AR.B., Custodio, K.K.S. et al. Conformational dynamics of \(\alpha \)-conotoxin PnIB in complex solvent systems. Mol Divers 24, 1291–1299 (2020). https://doi.org/10.1007/s11030-019-09993-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-09993-w

Keywords

Navigation