Skip to main content

Advertisement

Log in

Coumarins: antifungal effectiveness and future therapeutic scope

  • Comprehensive review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The antifungals that are in current clinical practice have a high occurrence of a side effect and multidrug resistance (MDR). Researchers across the globe are trying to develop a suitable antifungal that has minimum side effect as well as no MDR issues. Due to serious undesired effects connected with individual antifungals, it is now necessary to introduce novel and effective drugs having numerous potentials to regulate complex therapeutic targets of several fungal infections simultaneously. Thus, by taking a lead from this subject, synthesis of potent antifungals from coumarin moiety could contribute to the development of promising antifungal. Its resemblance and structural diversity make it possible to produce an auspicious antifungal candidate. Due to the natural origin of coumarin, its presence in diversity, and their broad spectrum of pharmacological activities, it secures an important place for the researcher to investigate and develop it as a promising antifungal in future. This manuscript discusses the bioavailability of coumarin (natural secondary metabolic molecule) that has privileged scaffold for many mycologists to develop it as a broad-spectrum antifungal against several opportunistic mycoses. As a result, several different kinds of coumarin derivatives were synthesized and their antifungal properties were evaluated. This review compiles various coumarin derivatives broadly investigated for antifungal activities to understand its current status and future therapeutic scope in antifungal therapy.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ji Q, Ge Z, Ge Z, Chen K, Wu H, Liu X, Huang Y, Yuan L, Yang X, Liao F (2016) Synthesis and biological evaluation of novel phosphoramidate derivatives of coumarin as chitin synthase inhibitors and antifungal agents. Eur J Med Chem 108:166–176. https://doi.org/10.1016/j.ejmech.2015.11.027

    Article  CAS  Google Scholar 

  2. Gulcin I, Tel AZ, Kirecci E (2008) Antioxidant, antimicrobial, antifungal, and antiradical activities of Cyclotrichium niveum (Boiss.) Manden and Scheng. Int J Food Prop 11:450–471. https://doi.org/10.1080/10942910701567364

    Article  CAS  Google Scholar 

  3. Gülçın İ, Oktay M, Kıreçcı E, Küfrevıoǧlu Öİ (2003) Screening of antioxidant and antimicrobial activities of anise (Pimpinella anisum L.) seed extracts. Food Chem 83:371–382. https://doi.org/10.1016/S0308-8146(03)00098-0

    Article  CAS  Google Scholar 

  4. Gülçin I, Küfrevioǧlu Öİ, Oktay M, Büyükokuroǧlu ME (2004) Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J Ethnopharmacol 90:205–215. https://doi.org/10.1016/j.jep.2003.09.028

    Article  Google Scholar 

  5. Köhler JR, Casadevall A, Perfect J (2015) The spectrum of fungi that infects humans. Cold Spring Harb Perspect Med 5:a019273. https://doi.org/10.1101/cshperspect.a019273

    Article  CAS  Google Scholar 

  6. Bruneton J (1995) Pharmacognosy, phytochemistry, medicinal plants. Lavoisier Publishing, Paris

    Google Scholar 

  7. Iranshahi M, Askari M, Sahebkar A, Adjipavlou-Litina D (2009) Evaluation of antioxidant, anti-inflammatory and lipoxygenase inhibitory activities of the prenylated coumarin umbelliprenin. Daru J Pharma Sci 17:99–103

    CAS  Google Scholar 

  8. Kontogiorgis C, Detsi A, Hadjipavlou-Litina D (2012) Coumarin-based drugs: a patent review (2008-present). Expert Opin Ther Pat 22:437–454. https://doi.org/10.1517/13543776.2012.678835

    Article  CAS  Google Scholar 

  9. Lake BG, Grasso P (1996) Comparison of the hepatotoxicity of coumarin in the rat, mouse, and Syrian hamster: a dose and time response study. Fundam Appl Toxicol 34:105–117. https://doi.org/10.1006/faat.1996.0181

    Article  CAS  Google Scholar 

  10. Soine TO (1964) Naturally occurring coumarins and related physiological activities. J Pharm Sci 53:231–264. https://doi.org/10.1002/jps.2600530302

    Article  CAS  Google Scholar 

  11. Borges F, Roleira F, Milhazes N, Santana L, Uriarte E (2005) Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Curr Med Chem 12:887–916. https://doi.org/10.2174/0929867053507315

    Article  CAS  Google Scholar 

  12. Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE, Nicolaides DN (2004) Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr Pharm Des 10:3813–3833. https://doi.org/10.2174/1381612043382710

    Article  CAS  Google Scholar 

  13. Egan D, O’kennedy R, Moran E, Cox D, Prosser E, Thornes RD (1990) The pharmacology, metabolism, analysis, and applications of coumarin and coumarin-related compounds. Drug Metab Rev. https://doi.org/10.3109/03602539008991449

    Article  Google Scholar 

  14. Dini A, Ramundo E, Saturnino P, Scimone A, Stagno IdA (1992) Isolation, characterization and antimicrobial activity of coumarin derivatives from Cyperus incompletus. Boll Soc Ital Biol Sper 68:453–461

    CAS  Google Scholar 

  15. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med 4:165rv113–165rv113. https://doi.org/10.1126/scitranslmed.3004404

    Article  CAS  Google Scholar 

  16. O’Brien HE, Parrent JL, Jackson JA, Moncalvo J-M, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550. https://doi.org/10.1128/AEM.71.9.5544-5550.2005

    Article  CAS  Google Scholar 

  17. Köhler J, Casadevall A, Perfect J (2014) The spectrum of fungi that infects humans. Cold Spring Harb Perspect Med 5:a019273. https://doi.org/10.1101/cshperspect.a019273

    Article  CAS  Google Scholar 

  18. Reedy JL, Bastidas RJ, Heitman J (2007) The virulence of human pathogenic fungi: notes from the south of France. Cell Host Microbe 2:77–83. https://doi.org/10.1016/j.chom.2007.07.004

    Article  CAS  Google Scholar 

  19. Sganga G (2011) Fungal infections in immunocompromised patients. Mycoses 54:1. https://doi.org/10.1111/j.1439-0507.2011.02134.x

    Article  Google Scholar 

  20. Kathiravan MK, Salake AB, Chothe AS, Dudhe PB, Watode RP, Mukta MS, Gadhwe S (2012) The biology and chemistry of antifungal agents: a review. Bioorg Med Chem 20:5678–5698. https://doi.org/10.1016/j.bmc.2012.04.045

    Article  CAS  Google Scholar 

  21. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI (2008) Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6:776–788. https://doi.org/10.1038/nrmicro1978

    Article  CAS  Google Scholar 

  22. Lee YK, Mazmanian SK (2010) Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330:1768–1773. https://doi.org/10.1126/science.1195568

    Article  CAS  Google Scholar 

  23. Seebacher C, Bouchara J-P, Mignon B (2008) Updates on the epidemiology of dermatophyte infections. Mycopathologia 166:335–352. https://doi.org/10.1007/s11046-008-9100-9

    Article  Google Scholar 

  24. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, Bouffard GG, Blakesley RW, Murray PR, Green ED (2009) Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192. https://doi.org/10.1126/science.1171700

    Article  CAS  Google Scholar 

  25. Jahns AC, Alexeyev OA (2014) Three dimensional distribution of Propionibacterium acnes biofilms in human skin. Exp Dermatol 23:687–689. https://doi.org/10.1111/exd.12482

    Article  Google Scholar 

  26. Havlickova B, Czaika VA, Friedrich M (2008) Epidemiological trends in skin mycoses worldwide. Mycoses 51:2–15. https://doi.org/10.1111/j.1439-0507.2008.01606.x

    Article  Google Scholar 

  27. Otto M (2009) Staphylococcus epidermidis—the ‘accidental’ pathogen. Nat Rev Microbiol 7:555–567. https://doi.org/10.1038/nrmicro2182

    Article  CAS  Google Scholar 

  28. Ibrahim F, Khan T, Pujalte GG (2015) Bacterial skin infections. Prim Care 42:485–499. https://doi.org/10.1016/j.pop.2015.08.001

    Article  Google Scholar 

  29. Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, Schoenfeld D, Nomicos E, Park M, Sequencing NISCC (2013) Topographic diversity of fungal and bacterial communities in human skin. Nat 498:367–370. https://doi.org/10.1038/nature12171

    Article  CAS  Google Scholar 

  30. Mohandas V, Ballal M (2011) Distribution of Candida species in different clinical samples and their virulence: biofilm formation, proteinase and phospholipase production: a study on hospitalized patients in southern India. J Glob Infect Dis 3:4–8. https://doi.org/10.4103/0974-777x.77288

    Article  Google Scholar 

  31. Kashem SW, Kaplan DH (2016) Skin immunity to Candida albicans. Trends Immunol 37:440–450. https://doi.org/10.1016/j.it.2016.04.007

    Article  CAS  Google Scholar 

  32. Nema H, Ahuja O, Bal A, Mohapatra L (1966) Mycotic flora of the conjunctiva. Am J Ophthalmol 62:968–970. https://doi.org/10.1016/0002-9394(66)91928-3

    Article  CAS  Google Scholar 

  33. Yu H (1965) Studies on fungi of the normal skin. Hifuka Kiyo 60:126–174

    CAS  Google Scholar 

  34. Vennewald I, Wollina U (2005) Cutaneous infections due to opportunistic molds: uncommon presentations. Clin Dermatol 23:565–571. https://doi.org/10.1016/j.clindermatol.2005.01.003

    Article  Google Scholar 

  35. Baley JE, Kliegman RM, Boxerbaum B, Fanaroft AA (1986) Fungal colonization in the very low birth weight infant. Pediatrics 78:225–232

    CAS  Google Scholar 

  36. Huang YC, Li CC, Lin TY, Lien RI, Chou YH, Wu JL, Hsueh C (1998) Association of fungal colonization and invasive disease in very low birth weight infants. Pediatr Infect Dis J 17:819–822. https://doi.org/10.1097/00006454-199809000-00014

    Article  CAS  Google Scholar 

  37. El-Mohandes AE, Johnson-Robbins L, Keiser JF, Simmens SJ, Aure MV (1994) Incidence of Candida parapsilosis colonization in an intensive care nursery population and its association with invasive fungal disease. Pediatr Infect Dis J 13:520–524. https://doi.org/10.1097/00006454-199406000-00011

    Article  CAS  Google Scholar 

  38. Roilides E, Farmaki E, Evdoridou J, Francesconi A, Kasai M, Filioti J, Tsivitanidou M, Sofianou D, Kremenopoulos G, Walsh TJ (2003) Candida tropicalis in a neonatal intensive care unit: epidemiologic and molecular analysis of an outbreak of infection with an uncommon neonatal pathogen. J Clin Microbiol 41:735–741. https://doi.org/10.1128/jcm.41.2.735-741.2003

    Article  Google Scholar 

  39. Brown GD, Denning DW, Levitz SM (2012) Tackling human fungal infections. Am Assoc Adv Sci 336:647. https://doi.org/10.1126/science.1222236

    Article  CAS  Google Scholar 

  40. Kirkpatrick CH (1994) Chronic mucocutaneous candidiasis. J Am Acad Dermatol 31:14–17. https://doi.org/10.1016/S0190-9622(08)81260-1

    Article  Google Scholar 

  41. Johnson RA (2000) HIV disease: mucocutaneous fungal infections in HIV disease. Clin Dermatol 18:411–422. https://doi.org/10.1016/s0738-081x(99)00136-4

    Article  CAS  Google Scholar 

  42. Richardson J, Ho J, Naglik J (2018) Candida–Epithelial interactions. J Fungi 4:22. https://doi.org/10.3390/jof4010022

    Article  CAS  Google Scholar 

  43. Goughenour KD, Rappleye CA (2017) Antifungal therapeutics for dimorphic fungal pathogens. Virulence 8:211–221. https://doi.org/10.1080/21505594.2016.1235653

    Article  CAS  Google Scholar 

  44. Sullivan DJ, Moran GP (2014) Human pathogenic fungi: molecular biology and pathogenic mechanisms. Caister Academic Press, Poole

    Google Scholar 

  45. Supparatpinyo K, Khamwan C, Baosoung V, Sirisanthana T, Nelson K (1994) Disseminated Penicillium marneffei infection in southeast Asia. Lancet 344:110–113. https://doi.org/10.1016/S0140-6736(94)91287-4

    Article  CAS  Google Scholar 

  46. Garibotto FM, Garro AD, Masman MF, Rodríguez AM, Luiten PG, Raimondi M, Zacchino SA, Somlai C, Penke B, Enriz RD (2010) New small-size peptides possessing antifungal activity. Bioorg Med Chem 18:158–167. https://doi.org/10.1016/j.bmc.2009.11.009

    Article  CAS  Google Scholar 

  47. Bassetti M, Righi E, Costa A, Fasce R, Molinari MP, Rosso R, Pallavicini FB, Viscoli C (2006) Epidemiological trends in nosocomial candidemia in intensive care. BMC Infect Dis 6:21. https://doi.org/10.1186/1471-2334-6-21

    Article  Google Scholar 

  48. Cramer RA, Perfect JR (2009) Recent advances in understanding human opportunistic fungal pethogenesis mechanisms. In: Anaissie EJ, McGinnis MR, Pfaller MA (eds) Clinical mycology, 2nd edn. Churchill Livingstone, Edinburg, pp 15–31. https://doi.org/10.1016/B978-1-4160-5680-5.00002-5

    Chapter  Google Scholar 

  49. Casadevall A (2007) Determinants of virulence in the pathogenic fungi. Fungal Biol Rev 21:130–132. https://doi.org/10.1016/j.fbr.2007.02.007

    Article  Google Scholar 

  50. Calderone RA, Fonzi WA (2001) Virulence factors of Candida albicans. Trends Microbiol 9:327–335. https://doi.org/10.1016/S0966-842X(01)02094-7

    Article  CAS  Google Scholar 

  51. Mayer FL, Wilson D, Hube B (2013) Candida albicans pathogenicity mechanisms. Virulence 4:119–128. https://doi.org/10.4161/viru.22913

    Article  Google Scholar 

  52. Mendes-Giannini MJS, Soares CP, da Silva JLM, Andreotti PF (2005) Interaction of pathogenic fungi with host cells: molecular and cellular approaches. FEMS Immunol Med Microbiol 45:383–394. https://doi.org/10.1016/j.femsim.2005.05.014

    Article  CAS  Google Scholar 

  53. Khan MSA, Ahmad I, Aqil F, Owais M, Shahid M, Musarrat J (2010) Virulence and pathogenicity of fungal pathogens with special reference to Candida albicans. Combat Fungal Infect. https://doi.org/10.1007/978-3-642-12173-9_2

    Article  Google Scholar 

  54. Li X, Yan Z, Xu J (2003) Quantitative variation of biofilms among strains in natural populations of Candida albicans. Microbiology 149:353–362. https://doi.org/10.1099/mic.0.25932-0

    Article  CAS  Google Scholar 

  55. Kabir MA, Hussain MA, Ahmad Z (2012) Candida albicans: a model organism for studying fungal pathogens. ISRN Microbiol. https://doi.org/10.5402/2012/538694

    Article  Google Scholar 

  56. Kumamoto CA (2008) Molecular mechanisms of mechanosensing and their roles in fungal contact sensing. Nat Rev Microbiol 6:667–673. https://doi.org/10.1038/nrmicro1960

    Article  CAS  Google Scholar 

  57. Davis D (2003) Adaptation to environmental pH in Candida albicans and its relation to pathogenesis. Curr Genet 44:1–7. https://doi.org/10.1007/s00294-003-0415-2

    Article  CAS  Google Scholar 

  58. Danhof HA, Vylkova S, Vesely EM, Ford AE, Gonzalez-Garay M, Lorenz MC (2016) Robust extracellular pH modulation by Candida albicans during growth in carboxylic acids. MBio 7:e01646-01616. https://doi.org/10.1128/mBio.01646-16

    Article  Google Scholar 

  59. Mendes-Giannini MJS, Taylor M, Bouchara J, Burger E, Calich V, Escalante E, Hanna S, Lenzi H, Machado M, Miyaji M (2000) Pathogenesis II: fungal responses to host responses: interaction of host cells with fungi. Med Mycol 38:113–123. https://doi.org/10.1080/mmy.38.s1.113.123

    Article  Google Scholar 

  60. Finlay BB, Falkow S (1997) Common themes in microbial pathogenicity revisited. Microbiol Mol Biol Rev 61:136–169

    Article  CAS  Google Scholar 

  61. Tsarfaty I, Sandovsky-Losica H, Mittelman L, Berdicevsky I, Segal E (2000) Cellular actin is affected by interaction with Candida albicans. FEMS Microbiol Lett 189:225–232. https://doi.org/10.1111/j.1574-6968.2000.tb09235.x

    Article  CAS  Google Scholar 

  62. Wasylnka JA, Moore MM (2002) Uptake of Aspergillus fumigatus conidia by phagocytic and nonphagocytic cells in vitro: quantitation using strains expressing green fluorescent protein. Infect Immun 70:3156–3163. https://doi.org/10.1128/IAI.70.6.3156-3163.2002

    Article  CAS  Google Scholar 

  63. Mendes-Giannini MJS, Hanna SA, da Silva JLM, Andreotti PF, Vincenzi LR, Benard G, Lenzi HL, Soares CP (2004) Invasion of epithelial mammalian cells by Paracoccidioides brasiliensis leads to cytoskeletal rearrangement and apoptosis of the host cell. Microbes Infect 6:882–891. https://doi.org/10.1016/j.micinf.2004.05.005

    Article  CAS  Google Scholar 

  64. Sheppard DC, Filler SG (2015) Host cell invasion by medically important fungi. Cold Spring Harb Perspect Med 5:a019687. https://doi.org/10.1101/cshperspect.a019687

    Article  CAS  Google Scholar 

  65. Dalle F, Wächtler B, L’ollivier C, Holland G, Bannert N, Wilson D, Labruère C, Bonnin A, Hube B (2010) Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol 12:248–271. https://doi.org/10.1111/j.1462-5822.2009.01394.x

    Article  CAS  Google Scholar 

  66. McKenzie C, Koser U, Lewis L, Bain J, Mora-Montes H, Barker R, Gow N, Erwig L (2010) Contribution of Candida albicans cell wall components to recognition by and escape from murine macrophages. Infect Immun 78:1650–1658. https://doi.org/10.1128/IAI.00001-10

    Article  CAS  Google Scholar 

  67. Lorenz MC, Bender JA, Fink GR (2004) Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot Cell 3:1076–1087. https://doi.org/10.1128/EC.3.5.1076-1087.2004

    Article  CAS  Google Scholar 

  68. Phan QT, Myers CL, Fu Y, Sheppard DC, Yeaman MR, Welch WH, Ibrahim AS, Edwards JE Jr, Filler SG (2007) Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol 5:e64. https://doi.org/10.1371/journal.pbio.0050064

    Article  CAS  Google Scholar 

  69. Park H, Myers CL, Sheppard DC, Phan QT, Sanchez AA, Edwards JE, Filler SG (2005) Role of the fungal Rasprotein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis. Cell Microbiol 7:499–510. https://doi.org/10.1111/j.1462-5822.2004.00476.x

    Article  CAS  Google Scholar 

  70. Feldmesser M, Tucker S, Casadevall A (2001) Intracellular parasitism of macrophages by Cryptococcus neoformans. Trends Microbiol 9:273–278. https://doi.org/10.1016/S0966-842X(01)02035-2

    Article  CAS  Google Scholar 

  71. Nicola AM, Robertson EJ, Albuquerque P, da Silveira Derengowski L, Casadevall A (2011) Nonlytic exocytosis of Cryptococcus neoformans from macrophages occurs in vivo and is influenced by phagosomal pH. MBio 2:e00167-00111. https://doi.org/10.1128/mBio.00167-11

    Article  CAS  Google Scholar 

  72. Sheehan DJ, Hitchcock CA, Sibley CM (1999) Current and emerging azole antifungal agents. Clin Microbiol Rev 12:40–79. https://doi.org/10.1128/CMR.12.1.40

    Article  CAS  Google Scholar 

  73. Fromtling RA (1988) Overview of medically important antifungal azole derivatives. Clin Microbiol Rev 1:187–217. https://doi.org/10.1128/CMR.1.2.187

    Article  CAS  Google Scholar 

  74. Turkan F, Cetin A, Taslimi P, Gulçin İ (2018) Some pyrazoles derivatives: potent carbonic anhydrase, α-glycosidase, and cholinesterase enzymes inhibitors. Arch Pharma 351:1800200. https://doi.org/10.1002/ardp.201800200

    Article  CAS  Google Scholar 

  75. Turkan F, Cetin A, Taslimi P, Karaman M, Gulçin İ (2019) Synthesis, biological evaluation and molecular docking of novel pyrazole derivatives as potent carbonic anhydrase and acetylcholinesterase inhibitors. Bioorg Chem 86:420–427. https://doi.org/10.1016/j.bioorg.2019.02.013

    Article  CAS  Google Scholar 

  76. Güzel E, Koçyiğit ÜM, Arslan BS, Ataş M, Taslimi P, Gökalp F, Nebioğlu M, Şişman İ, Gulçin İ (2019) Aminopyrazole-substituted metallophthalocyanines: preparation, aggregation behavior, and investigation of metabolic enzymes inhibition properties. Arch Pharm 352:1800292. https://doi.org/10.1002/ardp.201800292

    Article  CAS  Google Scholar 

  77. Kuzu B, Tan M, Taslimi P, Gülçin İ, Taşpınar M, Menges N (2019) Mono- or di-substituted imidazole derivatives for inhibition of acetylcholine and butyrylcholine esterases. Bioorg Chem 86:187–196. https://doi.org/10.1016/j.bioorg.2019.01.044

    Article  CAS  Google Scholar 

  78. Ujjinamatada RK, Baier A, Borowski P, Hosmane RS (2007) An analogue of AICAR with dual inhibitory activity against WNV and HCV NTPase/helicase: synthesis and in vitro screening of 4-carbamoyl-5-(4,6-diamino-2,5-dihydro-1,3,5-triazin-2-yl) imidazole-1-β-d-ribofuranoside. Bioorg Med Chem Lett 17:2285–2288. https://doi.org/10.1016/j.bmcl.2007.01.074

    Article  CAS  Google Scholar 

  79. Emami S, Foroumadi A, Falahati M, Lotfali E, Rajabalian S, Ebrahimi S-A, Farahyar S, Shafiee A (2008) 2-Hydroxyphenacyl azoles and related azolium derivatives as antifungal agents. Bioorg Med Chem Lett 18:141–146. https://doi.org/10.1016/j.bmcl.2007.10.111

    Article  CAS  Google Scholar 

  80. Timur İ, Kocyigit ÜM, Dastan T, Sandal S, Ceribası AO, Taslimi P, Gulcin İ, Koparir M, Karatepe M, Çiftçi M (2019) In vitro cytotoxic and in vivo antitumoral activities of some aminomethyl derivatives of 2,4-dihydro-3H-1,2,4-triazole-3-thiones—evaluation of their acetylcholinesterase and carbonic anhydrase enzymes inhibition profiles. J Biochem Mol Toxicol 33:e22239. https://doi.org/10.1002/jbt.22239

    Article  CAS  Google Scholar 

  81. Shingalapur RV, Hosamani KM, Keri RS (2009) Synthesis and evaluation of in vitro anti-microbial and anti-tubercular activity of 2-styryl benzimidazoles. Eur J Med Chem 44:4244–4248. https://doi.org/10.1016/j.ejmech.2009.05.021

    Article  CAS  Google Scholar 

  82. Sarı Y, Aktaş A, Taslimi P, Gök Y, Gulçin İ (2018) Novel N-propylphthalimide- and 4-vinylbenzyl-substituted benzimidazole salts: synthesis, characterization, and determination of their metal chelating effects and inhibition profiles against acetylcholinesterase and carbonic anhydrase enzymes. J Biochem Mol Toxicol 32:e22009. https://doi.org/10.1002/jbt.22009

    Article  CAS  Google Scholar 

  83. Gök Y, Akkoç S, Erdoğan H, Albayrak S (2016) In vitro antimicrobial studies of new benzimidazolium salts and silver N-heterocyclic carbene complexes. J Enzym Inhib Med Chem 31(6):1322–1327. https://doi.org/10.3109/14756366.2015.1132210

    Article  CAS  Google Scholar 

  84. Türker F, Barut Celepci D, Aktaş A, Taslimi P, Gök Y, Aygün M, Gülçin İ (2018) Meta-cyanobenzyl substituted benzimidazolium salts: synthesis, characterization, crystal structure and carbonic anhydrase, α-glycosidase, butyrylcholinesterase, and acetylcholinesterase inhibitory properties. Arch Pharm 351:1800029. https://doi.org/10.1002/ardp.201800029

    Article  CAS  Google Scholar 

  85. Borgers M (1980) Mechanism of action of antifungal drugs, with special reference to the imidazole derivatives. Rev Infect Dis 2:520–534. https://doi.org/10.1093/clinids/2.4.520

    Article  CAS  Google Scholar 

  86. Van den Bossche H, Ruysschaert JM, Defrise-Quertain F, Willemsens G, Cornelissen F, Marichal P, Cools W, Van Cutsem J (1982) The interaction of miconazole and ketoconazole with lipids. Biochem Pharma 31:2609–2617. https://doi.org/10.1016/0006-2952(82)90707-9

    Article  Google Scholar 

  87. Akins RA (2005) An update on antifungal targets and mechanisms of resistance in Candida albicans. Med Mycol 43:285–318. https://doi.org/10.1080/13693780500138971

    Article  CAS  Google Scholar 

  88. Munayyer HK, Mann PA, Chau AS, Yarosh-Tomaine T, Greene JR, Hare RS, Heimark L, Palermo RE, Loebenberg D, McNicholas PM (2004) Posaconazole is a potent inhibitor of sterol 14α-demethylation in yeasts and molds. Antimicrob Agents Chemother 48:3690–3696. https://doi.org/10.1128/AAC.48.10.3690-3696.2004

    Article  CAS  Google Scholar 

  89. Hof H (2006) A new, broad-spectrum azole antifungal: posaconazole–mechanisms of action and resistance, spectrum of activity. Mycoses 49:2–6. https://doi.org/10.1111/j.1439-0507.2006.01295.x

    Article  CAS  Google Scholar 

  90. Vandeputte P, Ferrari S, Coste AT (2011) Antifungal resistance and new strategies to control fungal infections. Int J Microbiol. https://doi.org/10.1155/2012/713687

    Article  Google Scholar 

  91. Brown R, Hazen EL (1957) Present knowledge of nystatin, an antifungal antibiotic. Trans NY Acad Sci 19:447–456

    CAS  Google Scholar 

  92. Sloane MB (1955) A new antifungal antibiotic, mycostatin (nystatin), ior the treatment of moniliasis: a preliminary report. J Investig Dermatol 24:569–571. https://doi.org/10.1038/jid.1955.77

    Article  CAS  Google Scholar 

  93. Lemke A, Kiderlen A, Kayser O (2005) Amphotericin B. Appl Microbiol Biotechnol 68:151–162. https://doi.org/10.1007/s00253-005-1955-9

    Article  CAS  Google Scholar 

  94. Sanglard D, Odds FC (2002) Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2:73–85. https://doi.org/10.1016/S1473-3099(02)00181-0

    Article  CAS  Google Scholar 

  95. Kato H, Hagihara M, Yamagishi Y, Shibata Y, Kato Y, Furui T, Watanabe H, Asai N, Koizumi Y, Mikamo H (2018) The evaluation of frequency of nephrotoxicity caused by liposomal amphotericin B. J Infect Chemother 24:725–728. https://doi.org/10.1016/j.jiac.2018.04.014

    Article  CAS  Google Scholar 

  96. Bossche HV (2002) Echinocandins: an update. Expert Opin Ther Pat 12:151–167. https://doi.org/10.1517/13543776.12.2.151

    Article  Google Scholar 

  97. Denning DW (2003) Echinocandin antifungal drugs. Lancet 362:1142–1151. https://doi.org/10.1016/S0140-6736(03)14472-8

    Article  CAS  Google Scholar 

  98. Douglas C, D’ippolito J, Shei G, Meinz M, Onishi J, Marrinan J, Li W, Abruzzo G, Flattery A, Bartizal K (1997) Identification of the FKS1 gene of Candida albicans as the essential target of 1,3-beta-d-glucan synthase inhibitors. Antimicrob Agents Chemother 41:2471–2479. https://doi.org/10.1128/AAC.41.11.2471

    Article  CAS  Google Scholar 

  99. Grover ND (2010) Echinocandins: a ray of hope in antifungal drug therapy. Indian J Pharmacol 42:9–11. https://doi.org/10.4103/0253-7613.62396

    Article  CAS  Google Scholar 

  100. Denning DW (2002) Echinocandins: a new class of antifungal. J Antimicrob Chemother 49:889–891. https://doi.org/10.1093/jac/dkf045

    Article  CAS  Google Scholar 

  101. Vermes A, Guchelaar HJ, Dankert J (2000) Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother 46:171–179. https://doi.org/10.1093/jac/46.2.171

    Article  CAS  Google Scholar 

  102. Onishi J, Meinz M, Thompson J, Curotto J, Dreikorn S, Rosenbach M, Douglas C, Abruzzo G, Flattery A, Kong L (2000) Discovery of novel antifungal (1,3)-β-d-glucan synthase inhibitors. Antimicrob Agents Chemother 44:368–377. https://doi.org/10.1128/AAC.44.2.368-377.2000

    Article  CAS  Google Scholar 

  103. Sanglard D, Coste A, Ferrari S (2009) Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Res 9:1029–1050. https://doi.org/10.1111/j.1567-1364.2009.00578.x

    Article  CAS  Google Scholar 

  104. Ryder NS (1988) Mechanism of action and biochemical selectivity of allylamine antimycotic agents. Ann NY Acad Sci 544:208–220. https://doi.org/10.1111/j.1749-6632.1988.tb40405.x

    Article  CAS  Google Scholar 

  105. Baloch RI, Mercer EI (1987) Inhibition of sterol Δ8 → Δ7-isomerase and Δ14-reductase by fenpropimorph tridemorph and fenpropidin in cell-free enzyme systems from Saccharomyces cerevisiae. Phytochemistry 26:663–668. https://doi.org/10.1016/S0031-9422(00)84762-7

    Article  CAS  Google Scholar 

  106. Polak A (1990) Mode of action studies. In: Ryley JF (ed) Chemotherapy of fungal diseases. Handbook of experimental pharmacology, vol 96. Springer, Berlin, pp 153–182. https://doi.org/10.1007/978-3-642-75458-6_8

    Chapter  Google Scholar 

  107. Evans WC (2009) Trease and evans’ pharmacognosy E-book. Els Health Sci, Saunders Ltd., London

    Google Scholar 

  108. Mead J, Smith J, Williams R (1958) Studies in detoxication. 72. The metabolism of coumarin and of o-coumaric acid. Biochem J 68:67–74. https://doi.org/10.1042/bj0680067

    Article  CAS  Google Scholar 

  109. Venugopala KN, Rashmi V, Odhav B (2013) Review on natural coumarin lead compounds for their pharmacological activity. Biomed Res Int. https://doi.org/10.1155/2013/963248

    Article  Google Scholar 

  110. Murray R (1989) Coumarins. Nat Prod Rep 6:591–624

    Article  CAS  Google Scholar 

  111. Piller N (1975) A comparison of the effectiveness of some anti-inflammatory drugs on thermal oedema. Br J Exp Pathol 56:554–559

    CAS  Google Scholar 

  112. Whitlon D, Sadowski J, Suttie J (1978) Mechanism of coumarin action: significance of vitamin K epoxide reductase inhibition. Biochemistry 17:1371–1377. https://doi.org/10.1021/bi00601a003

    Article  CAS  Google Scholar 

  113. Hodak K, Jakesová V, Dadák V (1967) On the antibiotic effects of natural coumarins. VI. The relation of structure to the antibacterial effects of some natural coumarins and the neutralization of such effects. Cesk Farm 16:86–91

    CAS  Google Scholar 

  114. Wang CM, Zhou W, Li CX, Chen H, Shi ZQ, Fan YJ (2009) Efficacy of osthol, a potent coumarin compound, in controlling powdery mildew caused by Sphaerotheca fuliginea. J Asian Nat Prod Res 11:783–791. https://doi.org/10.1080/10286020903158964

    Article  CAS  Google Scholar 

  115. Patil AD, Freyer AJ, Eggleston DS, Haltiwanger RC, Bean MF, Taylor PB, Caranfa MJ, Breen AL, Bartus HR (1993) The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn. J Med Chem 36:4131–4138. https://doi.org/10.1021/jm00078a001

    Article  CAS  Google Scholar 

  116. Kashman Y, Gustafson KR, Fuller R, McMahon J, Currens M, Buckheit JR, Hughes S, Cragg G, Boyd M (1992) The calanolides, a novel HIV-inhibitory class of coumarin derivatives from the tropical rainforest tree, Calophyllum lanigerum. J Med Chem 35:2735–2743. https://doi.org/10.1021/jm00093a004

    Article  CAS  Google Scholar 

  117. Shin E, Choi K-M, Yoo H-S, Lee C-K, Hwang BY, Lee MK (2010) Inhibitory effects of coumarins from the stem barks of Fraxinus rhynchophylla on adipocyte differentiation in 3T3-L1 cells. Biol Pharm Bull 33:1610–1614. https://doi.org/10.1248/bpb.33.1610

    Article  CAS  Google Scholar 

  118. Luszczki JJ, Wojda E, Andres-Mach M, Cisowski W, Glensk M, Glowniak K, Czuczwar SJ (2009) Anticonvulsant and acute neurotoxic effects of imperatorin, osthole and valproate in the maximal electroshock seizure and chimney tests in mice: a comparative study. Epile Res 85:293–299. https://doi.org/10.1016/j.eplepsyres.2009.03.027

    Article  CAS  Google Scholar 

  119. Basile A, Sorbo S, Spadaro V, Bruno M, Maggio A, Faraone N, Rosselli S (2009) Antimicrobial and antioxidant activities of coumarins from the roots of Ferulago campestris (Apiaceae). Mol 14:939–952. https://doi.org/10.3390/molecules14030939

    Article  CAS  Google Scholar 

  120. Finkelstein N, Rivett DE (1976) Puberulin, a new prenyloxy-coumarin from Agathosma puberula. Phytochemistry. https://doi.org/10.1016/S0031-9422(00)84417-9

    Article  Google Scholar 

  121. Bourgaud F, Hehn A, Larbat R, Doerper S, Gontier E, Kellner S, Matern U (2006) Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes. Phytochem Rev 5:293–308. https://doi.org/10.1007/s11101-006-9040-2

    Article  CAS  Google Scholar 

  122. Pereira TM, Franco DP, Vitorio F, Kummerle AE (2018) Coumarin compounds in medicinal chemistry: some important examples from the last years. Curr Top Med Chem 18:124–148. https://doi.org/10.2174/1568026618666180329115523

    Article  CAS  Google Scholar 

  123. Costa TM, Tavares LBB, de Oliveira D (2016) Fungi as a source of natural coumarins production. App Microbiol Biotechnol 100:6571–6584. https://doi.org/10.1007/s00253-016-7660-z

    Article  CAS  Google Scholar 

  124. Matos MJ, Santana L, Uriarte E, Abreu OA, Molina E, Yordi EG (2015) Coumarins-An important class of phytochemicals, phytochemicals. IntechOpen 5:113–140. https://doi.org/10.5772/59982

    Article  CAS  Google Scholar 

  125. Yang J, Sun X, Yang F, Liu C (2013) New agrochemicals disclosed in 2012. (State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Research Institute of Chemical Industry Co., Ltd., Shenyang 110021, China). Agrochemical 2013-01

  126. Peng XM, Damu GLV, Zhou H (2013) Current developments of coumarin compounds in medicinal chemistry. Curr Pharm Des 19:3884–3930. https://doi.org/10.2174/1381612811319210013

    Article  CAS  Google Scholar 

  127. Stiefel C, Schubert T, Morlock GE (2017) Bioprofiling of cosmetics with focus on streamlined coumarin analysis. ACS Omega 2:5242–5250. https://doi.org/10.1021/acsomega.7b00562

    Article  CAS  Google Scholar 

  128. Boisde PM, Meuly WC, Ub Staff (2000) Coumarin. Kirk-Othmer Encycl Chem Technol 4:1–10. https://doi.org/10.1002/0471238961.0315211302150919.a01

    Article  Google Scholar 

  129. Authority EFS (2008) Coumarin in flavourings and other food ingredients with flavouring properties-Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC). EFSA J 6:793. https://doi.org/10.2903/j.efsa.2008.793

    Article  Google Scholar 

  130. He X, Shang Y, Zhou Y, Yu Z, Han G, Jin W, Chen J (2015) Synthesis of coumarin-3-carboxylic esters via FeCl3-catalyzed multicomponent reaction of salicylaldehydes, Meldrum’s acid and alcohols. Tetrahedron 71:863–868. https://doi.org/10.1016/j.tet.2014.12.042

    Article  CAS  Google Scholar 

  131. Sandhu S, Bansal Y, Silakari O, Bansal G (2014) Coumarin hybrids as novel therapeutic agents. Bioorg Med Chem 22:3806–3814. https://doi.org/10.1016/j.bmc.2014.05.032

    Article  CAS  Google Scholar 

  132. Anand P, Singh B, Singh N (2012) A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg Med Chem 20:1175–1180. https://doi.org/10.1016/j.bmc.2011.12.042

    Article  CAS  Google Scholar 

  133. Upadhyay K, Mishra RK, Kumar A (2008) A convenient synthesis of some coumarin derivatives using SnCl2·2H2O as catalyst. Catal Lett 121:118–120. https://doi.org/10.1007/s10562-007-9307-2

    Article  CAS  Google Scholar 

  134. Shaabani A, Ghadari R, Rahmati A, Rezayan A (2009) Coumarin synthesis via Knoevenagel condensation reaction in 1,1,3,3-N,N,N′,N′-tetramethylguanidinium trifluoroacetate ionic liquid. J Iran Chem Soc 6:710–714. https://doi.org/10.1007/BF03246160

    Article  CAS  Google Scholar 

  135. Harayama T, Nakatsuka K, Nishioka H, Murakami K, Hayashida N, Ishii H (1994) Convenient synthesis of a simple coumarin from salicylaldehyde and wittig reagent. II. Synthesis of bromo-and methoxycarbonylcoumarins. Chem Pharm Bull 42:2170–2173. https://doi.org/10.1248/cpb.42.2170

    Article  CAS  Google Scholar 

  136. Ghantwal S, Samant S (1999) Claisen rearrangement of 3-bromo-,3, 6-dibromo-,3,8-dibromo-and 8-iodo/aminomethyl/acetyl-7-allyloxy-4-methylcoumarins. NISCAIR-CSIR, India, pp 1242–1247. http://hdl.handle.net/123456789/16650. Accessed Nov 1999

  137. Bulut M, Erk C (1996) Improved synthesis of some hydroxycoumarins. Dyes Pigm 30:99–104. https://doi.org/10.1016/0143-7208(95)00060-7

    Article  CAS  Google Scholar 

  138. Al-Bayati RI, Al-Amiery AAH, Al-Majedy YK (2010) Design, synthesis and bioassay of novel coumarins. Afr J Pure Appl Chem 4(6):74–86

    CAS  Google Scholar 

  139. Robertson A, Sandrock WF, Hendry CB (1931) CCCXXX. Hydroxy-carbonyl compounds. Part V. The preparation of coumarins and 1:4-pyrones from phenol, p-cresol, quinol, and α-naphthol. J Chem Soc. https://doi.org/10.1039/JR9310002426

    Article  Google Scholar 

  140. Soares VC, Alves MB, Souza ER, Pinto IO, Rubim JC, Andrade CKZ, Suarez PA (2007) Organo-niobate ionic liquids: synthesis, characterization and application as acid catalyst in Pechmann reactions. Int J Mol Sci 8:392–398. https://doi.org/10.3390/i8050392

    Article  CAS  Google Scholar 

  141. John E, Israelstam S (1961) Use of cation exchange resins in organic reactions. I. The Von Pechmann reaction. J Org Chem 26:240–242. https://doi.org/10.1021/jo01060a602

    Article  CAS  Google Scholar 

  142. Reddy BM, Reddy VR, Giridhar D (2001) Synthesis of coumarins catalyzed by eco-friendly W/ZrO2 solid acid catalyst. Synth Commun 31:3603–3607. https://doi.org/10.1081/SCC-100107007

    Article  CAS  Google Scholar 

  143. Al-Majedy YK, Kadhum AAH, Al-Amiery AA, Mohamad AB (2017) Coumarins: the antimicrobial agents. Syst Rev Pharm 8:62–70. https://doi.org/10.5530/srp.2017.1.11

    Article  CAS  Google Scholar 

  144. Hoult J, Paya M (1996) Pharmacological and biochemical actions of simple coumarins: natural products with therapeutic potential. Gen Pharmacol Vasc Syst 27:713–722. https://doi.org/10.1016/0306-3623(95)02112-4

    Article  CAS  Google Scholar 

  145. Mercer DK, Robertson J, Wright K, Miller L, Smith S, Stewart CS, Deborah A (2013) A prodrug approach to the use of coumarins as potential therapeutics for superficial mycoses. PLoS ONE 8:e80760. https://doi.org/10.1371/journal.pone.0080760

    Article  CAS  Google Scholar 

  146. Guerra FQ, Araújo RS, Sousa JP, Silva VA, Pereira FO, Mendonça-Junior FJ, Barbosa-Filho JM, Pereira JA, Lima EO (2018) A new coumarin derivative, 4-acetatecoumarin, with antifungal activity and association study against Aspergillus spp. Braz J Microbiol 49:407–413. https://doi.org/10.1016/j.bjm.2017.06.009

    Article  CAS  Google Scholar 

  147. Puttaraju KB, Shivashankar K, Mahendra M, Rasal VP, Vivek PNV, Rai K, Chanu MB (2013) Microwave assisted synthesis of dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-4-ones; synthesis, in vitro antimicrobial and anticancer activities of novel coumarin substituted dihydrobenzo[4,5]imidazo[1,2-a]pyrimidin-4-ones. Eur J Med Chem 69:316–322. https://doi.org/10.1016/j.ejmech.2013.07.015

    Article  CAS  Google Scholar 

  148. Marcondes HC, de Oliveira TT, Taylor JG, Hamoy M, do Leonel Neto A, de Mello VJ, Nagem TJ (2015) Antifungal activity of coumarin mammeisin isolated from species of the Kielmeyera Genre (family: Clusiaceae or Guttiferae). J Chem Article ID 241243. https://doi.org/10.1155/2015/241243

  149. Ojala T, Remes S, Haansuu P, Vuorela H, Hiltunen R, Haahtela K, Vuorela P (2000) Antimicrobial activity of some coumarin containing herbal plants growing in Finland. J Ethnopharmacol 73:299–305. https://doi.org/10.1016/S0378-8741(00)00279-8

    Article  CAS  Google Scholar 

  150. Thati B, Noble A, Rowan R, Creaven BS, Walsh M, McCann M, Egan D, Kavanagh K (2007) Mechanism of action of coumarin and silver(I)–coumarin complexes against the pathogenic yeast Candida albicans. Toxicol In Vitro 21:801–808. https://doi.org/10.1016/j.tiv.2007.01.022

    Article  CAS  Google Scholar 

  151. Zhang MZ, Zhang RR, Wang JQ, Yu X, Zhang YL, Wang QQ, Zhang WH (2016) Microwave-assisted synthesis and antifungal activity of novel fused Osthole derivatives. Eur J Med Chem 124:10–16. https://doi.org/10.1016/j.ejmech.2016.08.012

    Article  CAS  Google Scholar 

  152. Siddiqui ZN, Ahmad A, Khan AU (2011) Synthesis of 4-hydroxycoumarin heteroarylhybrids as potential antimicrobial agents. Arch Pharma 344:394–401. https://doi.org/10.1002/ardp.201000218

    Article  CAS  Google Scholar 

  153. Dietrich SM, Valio I (1973) Effect of coumarin and its derivatives on the growth of Pythium and other fungi. Trans Br Mycol Soc 61:461–469. https://doi.org/10.1016/S0007-1536(73)80116-0

    Article  CAS  Google Scholar 

  154. Knypl J (1963) A fungistatic action of coumarin. Nature 200:800–802. https://doi.org/10.1038/200800b0

    Article  CAS  Google Scholar 

  155. Guerra FQS, Araújo RSAD, Sousa JPD, Pereira FDO, Mendonça-Junior FJ, Barbosa-Filho JM, de Oliveira Lima E (2015) Evaluation of antifungal activity and mode of action of new coumarin derivative, 7-hydroxy-6-nitro-2h-1-benzopyran-2-one, against Aspergillus spp. Evid Based Complement Altern Med Article ID 925096. https://doi.org/10.1155/2015/925096

  156. Shao PL, Huang LM, Hsueh PR (2007) Recent advances and challenges in the treatment of invasive fungal infections. Int J Antimicrob Agents 30:487–495. https://doi.org/10.1016/j.ijantimicag.2007.07.019

    Article  CAS  Google Scholar 

  157. Henry JC (1984) Ketoconazole. Dermatol Clin 2:121–128. https://doi.org/10.1016/S0733-8635(18)30996-3

    Article  Google Scholar 

  158. Zaragoza R, Pemán J (2008) The diagnostic and therapeutic approach to fungal infections in critical care settings. Adv Sepsis 6:90–98

    Google Scholar 

  159. Ghannoum MA, Kuhn D (2002) Voriconazole—better chances for patients with invasive mycoses. Eur J Med Res 7:242–256

    CAS  Google Scholar 

  160. Denning DW, Ribaud P, Milpied N, Caillot D, Herbrecht R, Thiel E, Haas A, Ruhnke M, Lode H (2002) Efficacy and safety of voriconazole in the treatment of acute invasive aspergillosis. Clin Infect Dis 34:563–571. https://doi.org/10.1086/324620

    Article  CAS  Google Scholar 

  161. Thompson GR, Cadena J, Patterson TF (2009) Overview of antifungal agents. Clin Chest Med 30:203–215. https://doi.org/10.1016/j.ccm.2009.02.001

    Article  Google Scholar 

  162. Keating GM (2005) Posaconazole. Drugs 65:1553–1567. https://doi.org/10.2165/00003495-200565110-00007

    Article  CAS  Google Scholar 

  163. Torres HA, Hachem RY, Chemaly RF, Kontoyiannis DP, Raad II (2005) Posaconazole: a broad-spectrum triazole antifungal. Lancet Infect Dis 5:775–785. https://doi.org/10.1016/S1473-3099(05)70297-8

    Article  CAS  Google Scholar 

  164. Yamazumi T, Pfaller M, Messer S, Houston A, Hollis R, Jones R (2000) In vitro activities of ravuconazole (BMS-207147) against 541 clinical isolates of Cryptococcus neoformans. Antimicrob Agents Chemother 44:2883–2886. https://doi.org/10.1128/AAC.44.10.2883-2886.2000

    Article  CAS  Google Scholar 

  165. Zonios DI, Bennett JE (2008) Update on azole antifungals. In: Seminars in respiratory and critical care medicine. Thieme Medical Publishers, New York, pp 198–210. https://doi.org/10.1055/s-2008-1063858

  166. Pardasani A (2000) Oral antifungal agents used in dermatology. Curr Probl Dermatol 12(6):270–275. https://doi.org/10.1016/S1040-0486(00)90023-1

    Article  Google Scholar 

  167. Vincent T (2000) Current and future antifungal therapy: new targets for antifungal therapy. Int J Antimicrob Agents 16:317–321. https://doi.org/10.1016/S0924-8579(00)00258-2

    Article  Google Scholar 

  168. Fleet G (1991) Cell walls. In: Rose AH, Harrison JS (eds) The yeasts: yeast organelles, 4, 2nd edn. Acad Press, London, pp 199–277

    Google Scholar 

  169. Garcia-Cuesta C, Sarrion-Pérez MG, Bagán JV (2014) Current treatment of oral candidiasis: a literature review. J Clin Exp Dent 6:e576–e582. https://doi.org/10.4317/jced.51798

    Article  Google Scholar 

  170. Te Welscher YM, Hendrik H, Balagué MM, Souza CM, Riezman H, De Kruijff B, Breukink E (2008) Natamycin blocks fungal growth by binding specifically to ergosterol without permeabilizing the membrane. J Biol Chem 283:6393–6401. https://doi.org/10.1074/jbc.M707821200

    Article  Google Scholar 

  171. Nett JE, Andes DR (2016) Antifungal agents: spectrum of activity, pharmacology, and clinical indications. Infect Dis Clin 30:51–83. https://doi.org/10.1016/j.idc.2015.10.012

    Article  Google Scholar 

  172. Chen SC, Sorrell TC (2007) Antifungal agents. Med J Aust 187:404–409. https://doi.org/10.5694/j.1326-5377.2007.tb01313.x

    Article  Google Scholar 

  173. Khan ZK, Jain P (2000) Antifungal agents and immunomodulators in systemic mycoses. Indian J Chest Dis Allied Sci 42:345–356

    CAS  Google Scholar 

  174. Hata M, Ishii Y, Watanabe E, Uoto K, Kobayashi S, Yoshida K-I, Otani T, Ando A (2010) Inhibition of ergosterol synthesis by novel antifungal compounds targeting C-14 reductase. Med Mycol 48:613–621. https://doi.org/10.3109/13693780903390208

    Article  CAS  Google Scholar 

  175. Al-Amiery AA, Kadhum AAH, Mohamad AB (2012) Antifungal activities of new coumarins. Molecules 17:5713–5723. https://doi.org/10.3390/molecules17055713

    Article  CAS  Google Scholar 

  176. Behrami A, Krasniqi I (2012) Antibacterial activity of coumarine derivatives synthesized from 8-amino-4,7-dihydroxy-chromen-2-one and comparison with standard drug. J Chem Pharm Res 4:2495–2500

    CAS  Google Scholar 

  177. Bonsignore L, Cottiglia F, Elkhaili H, Jehl F, Lavagna SM, Loy G, Manna F, Monteil H, Pompei D, Secci D (1998) Synthesis and antimicrobial activity of coumarin 7-substituted cephalosporins and sulfones. Il Farmaco 53:425–430. https://doi.org/10.1016/S0014-827X(98)00047-0

    Article  CAS  Google Scholar 

  178. Brahmbhatt D, Kaneria AR, Patel AK, Patel NH (2010) Synthesis and antimicrobial screening of some 3-[4-(3-aryl-1-phenyl-1H-pyrazol-4-yl)-6-aryl-pyridin-2-yl] and 4-methyl-3-phenyl-6-[4-(3-aryl-1-phenyl-1H-pyrazol-4-yl)-6-aryl-pyridin-2-yl] coumarins. CSIR, pp 971–977. http://hdl.handle.net/123456789/9935. Accessed July 2010

  179. Bairagi S, Bhosale A, Deodhar MN (2009) Design, synthesis and evaluation of Schiff’s bases of 4-chloro-3-coumarin aldehyde as antimicrobial agents. J Chem 6:759–762. https://doi.org/10.1155/2009/874389

    Article  CAS  Google Scholar 

  180. Basanagouda M, Kulkarni MV, Sharma D, Gupta VK, Sandhyarani P, Rasal VP (2009) Synthesis of some new 4-aryloxmethylcoumarins and examination of their antibacterial and antifungal activities. J Chem Sci 121:485–495. https://doi.org/10.1007/s12039-009-0058-z

    Article  CAS  Google Scholar 

  181. Widelski J, Luca SV, Skiba A, Chinou I, Marcourt L, Wolfender J-L, Skalicka-Wozniak K (2018) Isolation and antimicrobial activity of coumarin derivatives from fruits of Peucedanum luxurians Tamamsch. Molecules 23:1222. https://doi.org/10.3390/molecules23051222

    Article  CAS  Google Scholar 

  182. Zhang SY, Fu DJ, Sun HH, Yue XX, Liu YC, Zhang YB, Liu HM (2016) Synthesis and bioactivity of novel coumarin derivatives. Chem Heterocycl Compd 52:374–378

    Article  CAS  Google Scholar 

  183. Dizbay M et al (2009) Fungemia and cutaneous zygomycosis due to Mucor circinelloides in an intensive care unit patient: case report and review of literature. Jpn J Infect Dis 62(2):146–148

    Google Scholar 

  184. Kobayashi GS (1996) Disease mechanisms of fungi. In: Baron S (ed) Medical microbiology, 4th edn. Galveston

  185. Chapman SW, Dismukes WE, Proia LA, Bradsher RW, Pappas PG, Threlkeld MG, Kauffman CA (2008) Clinical practice guidelines for the management of blastomycosis: 2008 Update by the Infectious Diseases Society of America. Clin Infect Dis 46(12):1801–1812. https://doi.org/10.1086/588300

    Article  CAS  Google Scholar 

  186. Tavanti A, Naglik JR, Osherov N (2012). Host–fungal interactions: pathogenicity versus immunity. Int J Microbiol Article ID 562480. https://doi.org/10.1155/2012/562480

Download references

Acknowledgements

This work was supported by the Department of Biotechnology (DBT, Government of India) through Project No. BT/IN/Indo-US/Foldscope/39/2015, and JSP received a fellowship from DBT, Government of India. The authors are grateful to the National Institute of Technology (NIT), Raipur (CG), India, for providing the space and facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awanish Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prusty, J.S., Kumar, A. Coumarins: antifungal effectiveness and future therapeutic scope. Mol Divers 24, 1367–1383 (2020). https://doi.org/10.1007/s11030-019-09992-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-019-09992-x

Keywords

Navigation