Microwave-assisted green synthesis of 4,5-dihydro-1H-pyrazole-1-carbothioamides in water

  • Hamid Reza Farmani
  • Mohammad Hossein Mosslemin
  • Bahareh Sadeghi
Short Communication
  • 29 Downloads

Abstract

Rapid, efficient, simple and green procedure for the synthesis of 4,5-dihydro-1H-pyrazole-1-carbothioamides via the multicomponent reaction of aryl aldehydes, acetophenones and thiosemicarbazide in water in the presence of tetrabutylammonium hydroxide under microwave irradiation is reported.

Keywords

4,5-Dihydro-1H-pyrazole-1-carbothioamides Microwave irradiation Multicomponent reaction Green chemistry Water TBAOH MCRs 

Supplementary material

11030_2018_9814_MOESM1_ESM.docx (16.7 mb)
Supplementary material 1 (docx 17147 KB)

References

  1. 1.
    Dallinger D, Kappe O (2007) Microwave-assisted synthesis in water as solvent. Chem Rev 107:2563–2591.  https://doi.org/10.1021/cr0509410 CrossRefPubMedGoogle Scholar
  2. 2.
    Frecentese F, Saccone I, Caliendo G, Corvino A, Fiorino F, Magli E, Perissutti E, Severino B, Santagada V (2016) Microwave assisted organic synthesis of heterocycles in aqueous media: recent advances in medicinal chemistry. Med Chem 12:720–732.  https://doi.org/10.2174/1573406412666160502153553 CrossRefPubMedGoogle Scholar
  3. 3.
    Gawande MB, Shelke SN, Zboril R, Varma RS (2014) Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics. Acc Chem Res 47:1338–1348.  https://doi.org/10.1021/ar400309b CrossRefPubMedGoogle Scholar
  4. 4.
    Jacob J (2012) Microwave assisted reactions in organic chemistry: a review of recent advances. Int J Chem 4:29–43.  https://doi.org/10.5539/ijc.v4n6p29 CrossRefGoogle Scholar
  5. 5.
    Rotstein BH, Zaretsky S, Rai V, Yudin AK (2014) Small heterocycles in multicomponent reactions. Chem Rev 114:8323–8359.  https://doi.org/10.1021/cr400615v CrossRefPubMedGoogle Scholar
  6. 6.
    Touré BB, Hall DG (2009) Natural product synthesis using multicomponent reaction strategies. Chem Rev 109:4439–4486.  https://doi.org/10.1021/cr800296p CrossRefPubMedGoogle Scholar
  7. 7.
    Butler RN, Coyne AG (2016) Organic synthesis reactions on-water at the organic-liquid water interface. Org Biomol Chem 14:9945–9960.  https://doi.org/10.1039/C6OB01724J CrossRefPubMedGoogle Scholar
  8. 8.
    Chanada A, Fokin VV (2009) Organic synthesis “on water”. Chem Rev 109:725–748.  https://doi.org/10.1021/cr800448q CrossRefGoogle Scholar
  9. 9.
    Li C-J, Chen L (2006) Organic synthesis in water. Chem Soc Rev 35(68):82.  https://doi.org/10.1039/b507207g Google Scholar
  10. 10.
    Küçüküzel ŞG, Şenkardeş S (2015) Recent advances in bioactive pyrazoles. Eur J Med Chem 97:786–815.  https://doi.org/10.1016/j.ejmech.2014.11.059 CrossRefGoogle Scholar
  11. 11.
    Chimenti F, Maccioni E, Secci D, Bolasco A, Chimenti P, Granese A, Befani O, Turini P, Alcaro S, Ortuso F, Cirilli R, La Torre F, Cardia MC, Distinto S (2005) Synthesis, molecular modeling studies, and selective inhibitory activity against monoamine oxidase of 1-thiocarbamoyl-3,5-diaryl-4,5-dihydro-(1\(H\))-pyrazole derivatives. J Med Chem 48:7113–7122.  https://doi.org/10.1021/jm040903t CrossRefPubMedGoogle Scholar
  12. 12.
    Özdemir A, Altintop MD, Kaplancikli ZA, Can ÖD, Demir Özkay Ü, Turan-Zitouni G (2015) Synthesis and evaluation of new 1,5-diaryl-3[4-methyl-sulfonyl)phenyl]-4,5-dihydro-1\(H\)-pyrazole derivatives as potential antidepressant agents. Molecules 20:2668–2684.  https://doi.org/10.3390/molecules20022668 CrossRefPubMedGoogle Scholar
  13. 13.
    Abdelhamid AO, Gomha SM, Abdelriheem NA, Kandeel SM (2016) Synthesis of new 3-heteroarylindoles as potential anticancer agents. Molecules 21:929–943.  https://doi.org/10.3390/molecules21070929 CrossRefGoogle Scholar
  14. 14.
    Ansari A, Ali A, Asif M, Shamsuzzaman (2017) Review biologically active pyrazole derivatives. J New J Chem 41:16–41.  https://doi.org/10.1039/C6NJ03181A CrossRefGoogle Scholar
  15. 15.
    Tessmann JW, Buss J, Begnini KR, Berneira LM, Paula FR, de Pereira CMP, Collares T, Seixas FK (2017) Antitumor potential of 1-thiocarbamoyl-3,5-diaryl-4,5-dihydro-1H-pyrazoles in human bladder cancer cells. Biomed Pharm 94:37–46.  https://doi.org/10.1016/j.biopha.2017.07.060 CrossRefGoogle Scholar
  16. 16.
    Abdelhamid AO, El Sayed IE, Hussein MZ, Mangoud MM (2016) Synthesis and antimicrobial activity of some new thiadiazoles, thioamides, 5-arylazothiazoles and pyrimido[4,5-\(d\)][1,2,4]triazolo[4,3-\(a\)]pyrimidines. Molecules 21:1072–1090.  https://doi.org/10.3390/molecules21081072 CrossRefGoogle Scholar
  17. 17.
    El-Sabbagh OI, Baraka MM, Ibrahim SM, Pannecouque C, Andrei G, Snoeck R, Balzarini J, Rashad AA (2009) Synthesis and antiviral activity of new pyrazole and thiazole derivatives. Eur J Med Chem 44:3746–3753.  https://doi.org/10.1016/j.ejmech.2009.03.038 CrossRefPubMedGoogle Scholar
  18. 18.
    Barsoum FF, Girgis AS (2009) Facile synthesis of bis(4,5-dihydro-1\(H\)-pyrazole-1-carboxamide) and their thio-analogues of potential \(\text{ PEG }_{2}\) inhibitory properties. Eur J Med Chem 44:2172–2177.  https://doi.org/10.1016/j.ejmech.2008.10.020 CrossRefPubMedGoogle Scholar
  19. 19.
    Alex JM, Kumar R (2014) 4,5-Dihydro-1\(H\)-pyrazole: an indispensable scaffold. J Enzym Inhib Med Chem 29:427–442.  https://doi.org/10.3109/14756366.2013.795956 CrossRefGoogle Scholar
  20. 20.
    Abdul R, Bhat FA, Amir A (2009) Bis-pyrazolines: synthesis, characterization and antiamoebic activity as inhibitors of growth of Entamoeba histolytica. Eur J Med Chem 44:426–431.  https://doi.org/10.1016/j.ejmech.2007.11.005 CrossRefGoogle Scholar
  21. 21.
    Chimenti F, Carradori S, Secci D, Bolasco A, Bizzarri B, Chimenti P, Granese A, Yanez M, Orallo F (2010) Synthesis and inhibitory activity against human monoamine oxidase of N1-thiocarbamoyl-3,5-di(hetero)aryl-4,5-dihydro-(1\(H\))-pyrazole derivatives. Eur J Med Chem 45:800–804.  https://doi.org/10.1016/j.ejmech.2009.11.003 CrossRefPubMedGoogle Scholar
  22. 22.
    Ibrahim MM (2015) Synthesis and characterization of new 3,5-disubstituted-4,5-dihydro-1\(H\)-pyrazole and their carbothioamide derivatives. Eur J Chem 6:78–83.  https://doi.org/10.5155/eurjchem.6.1.78-83.1148 CrossRefGoogle Scholar
  23. 23.
    Lange JHM, Sanders HJ, van Rheenen J (2011) An expedient atom-efficient synthesis of the cannabinoid \(\text{ CB }_{1}\) receptor inverse agonist ibipinabant. Tetrahedron Lett 52:1303–1305.  https://doi.org/10.1016/j.tetlet.2011.01.068 CrossRefGoogle Scholar
  24. 24.
    Hamad Elgazwy AS, Nassar E, Zaki MY (2012) Synthesis, biological evaluation of some 2,3-dihydropyrazoles and thiazoles as anti-inflammatory and antibacterial agents. Org Chem Curr Res 1:112–119.  https://doi.org/10.4172/2161-0401.1000112 CrossRefGoogle Scholar
  25. 25.
    Zhao M-Y, Yin Y, Yu X-W, Sngani CB, Wang S-F, Lu A-M, Yang L-F, Lv P-C, Jiang M-G, Zhu H-L (2015) Synthesis biological evaluation and 3D-QSAR study of novel 4,5-dihydro-1H-pyrazole thiazole derivatives as \(\text{ BRAF }^{{\rm V600E}}\) inhibitors. Bioorg Med Chem 23:46–54.  https://doi.org/10.1016/j.bmc.2014.11.029 CrossRefPubMedGoogle Scholar
  26. 26.
    Nossier ES, Fahmy HH, Khalifa NM, El-Eraky WI, Baset MA (2017) Design and synthesis of novel pyrazole-substituted different nitrogenous heterocyclic systems as potential anti-inflammatory agents. Molecules 22:512–527.  https://doi.org/10.3390/molecules22040512 CrossRefGoogle Scholar
  27. 27.
    Pizzuti L, Piovesan LA, Flores AFC, Quina FH, Pereira CMP (2009) Environmentally friendly sonocatalysis promoted preparation of 1-thiocarbamoyl-3,5-diaryl-4,5-dihydro-1H-pyrazoles. Ultrason Sonochem 16:728–731.  https://doi.org/10.1016/j.ultsonch.2009.02.005 CrossRefPubMedGoogle Scholar
  28. 28.
    Budakoti A, Bhat AR, Azam A (2009) Synthesis of new 2-(5-substituted-3-phenyl-2-pyrazolinyl)-1,3-thiazolino[5,4b]quinoxaline derivatives and evaluation of their antiamoebic activity. Eur J Med Chem 44:1317–1325.  https://doi.org/10.1016/j.ejmech.2008.02.002 CrossRefPubMedGoogle Scholar
  29. 29.
    Abdel-Wahab BF, Abdel-Aziz HA, Ahmed EM (2009) Synthesis and antimicrobial evaluation of 1-(benzofuran-2-yl)-4-nitro-3-arylbutan-1-ones and 3-(benzofuran-2-yl)-4,5-dihydro-5-aryl-1-[4-(aryl)-1,3-thiazol-2-yl]-1H-pyrazoles. Eur J Med Chem 44:2632–2635.  https://doi.org/10.1016/j.ejmech.2008.09.029 CrossRefPubMedGoogle Scholar
  30. 30.
    Chawla R, Sahoo U, Arora A, Sharma PC, Radhakrishnan V (2010) Microwave-assisted synthesis of some novel 2-pyrazoline derivatives as possible antimicrobial agents. Acta Polo Pharm Drug Res 64:55–61Google Scholar
  31. 31.
    Yang W, Hu Y, Yang Y-S, Zhang F, Zhang Y-B, Wang X-L, Tang J-F, Zhong W-Q, Zhu H-L (2013) Design, modification and 3D QSAR studies of novel naphthalin-containing pyrazoline derivatives with/without thiourea skeleton as anticancer agents. Bioorg Med Chem 21:1050–1063.  https://doi.org/10.1016/j.bmc.2013.01.013 CrossRefPubMedGoogle Scholar
  32. 32.
    Özdemir Z, Kandilci HB, Gümüşel B, Çaliş Ü, Bilgin AA (2007) Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-furyl)-pyrazoline derivatives. Eur J Med Chem 42:373–379.  https://doi.org/10.1016/j.ejmech.2006.09.006 CrossRefPubMedGoogle Scholar
  33. 33.
    Özdemir Z, Kandilci HB, Gümüşel B, Çaliş Ü, Bilgin AA (2008) Synthesis and studies on antidepressant and anticonvulsant activities of some 3-(2-thienyl)-pyrazoline derivatives. Arch Pharm 341:701–707.  https://doi.org/10.1002/ardp.200800068 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hamid Reza Farmani
    • 1
  • Mohammad Hossein Mosslemin
    • 1
  • Bahareh Sadeghi
    • 1
  1. 1.Department of Chemistry, Yazd BranchIslamic Azad UniversityYazdIran

Personalised recommendations