Molecular Diversity

, Volume 21, Issue 1, pp 1–8 | Cite as

Iodine-mediated \({ sp}^{3}\) C–H functionalization of methyl ketones: a one-pot synthesis of functionalized indolizines via the 1,3-dipolar cycloaddition reaction between pyridinium ylides and ynones

  • Issa Yavari
  • Jamil Sheykhahmadi
  • Maryam Naeimabadi
  • Mohammad Reza Halvagar
Original Article


An efficient transition-metal-free approach toward C–H bond activation by using molecular \(\hbox {I}_{2}\)-mediated \({ sp}^{3}\) C–H bond functionalization for the synthesis of indolizine derivatives via 1,3-dipolar cycloaddition reaction of nitrogen ylides with ynones is described.

Graphical Abstract


C–H activation 1, 3-Dipolar cycloaddition N-ylides Indolizines Iodine Ynones 

Supplementary material

11030_2016_9720_MOESM1_ESM.doc (3.2 mb)
Supplementary material 1 (doc 3304 KB)


  1. 1.
    Sadowski B, Klajn J, Gryko DT (2016) Recent advances in the synthesis of indolizines and their \(\uppi \)-expanded analogues. Org Biomol Chem 14:7804–7828. doi: 10.1039/C6OB00985A CrossRefPubMedGoogle Scholar
  2. 2.
    Singh GS, Mmatli EE (2011) Recent progress in synthesis and bioactivity studies of indolizines. Eur J Med Chem 46:5237–5257. doi: 10.1016/j.ejmech.2011.08.042 CrossRefPubMedGoogle Scholar
  3. 3.
    Ghinet A, Abuhaie CM, Gautret P, Benoit R, Dubois J, Farce A, Belei D, Bîcu E (2015) Studies on indolizines. Evaluation of their biological properties as microtubule-interacting agents and as melanoma targeting compounds. Eur J Med Chem 89:115–127. doi: 10.1016/j.ejmech.2014.10.041 CrossRefPubMedGoogle Scholar
  4. 4.
    Gupta SP, Mathur AN, Nagappa AN, Kumar D, Kumaran SA (2003) Quantitative structure–activity relationship study on a novel class of calcium-entry blockers: 1-[(4-(aminoalkoxy)phenyl)sulphonyl] indolizine. Eur J Med Chem 38:867–873. doi: 10.1016/j.ejmech.2003.08.001 CrossRefPubMedGoogle Scholar
  5. 5.
    Danac R, Al Matarneh CM, Shova S, Daniloaia T, Balan M, Mangalagiu II (2015) New indolizines with phenanthroline skeleton: synthesis, structure, antimycobacterial and anticancer evaluation. Bioorg Med Chem 23:2318–2327. doi: 10.1016/j.bmc.2015.03.077 CrossRefPubMedGoogle Scholar
  6. 6.
    Huang W, Zuo T, Jin H, Liu Z, Yang Z, Yu X, Zhang L, Zhang L (2013) Design, synthesis and biological evaluation of indolizine derivatives as HIV-1 VIF–ElonginC interaction inhibitors. Mol Divers 17:221–243. doi: 10.1007/s11030-013-9424-3 CrossRefPubMedGoogle Scholar
  7. 7.
    Huckaba AJ, Yella A, Brogdon P, Murphy JS, Nazeeruddin MK, Grätzel M, Delcamp JH (2016) A low recombination rate indolizine sensitizer for dye-sensitized solar cells. Chem Commun 52:8424–8427. doi: 10.1039/C6CC02247B CrossRefGoogle Scholar
  8. 8.
    Surpateanu GG, Becuwe M, Lungu NC, Dron PI, Fourmentin S, Landy D, Surpateanu G (2007) Photochemical behaviour upon the inclusion for some volatile organic compounds in new fluorescent indolizine \(\upbeta \)-cyclodextrin sensors. J Photochem Photobiol A 185:312–320. doi: 10.1016/j.jphotochem.2006.06.026 CrossRefGoogle Scholar
  9. 9.
    Sonnenschein H, Henrich G, Resch-Genger V, Schulz B (2000) Fluorescence and UV/Vis spectroscopic behaviour of novel biindolizines. Dyes Pigm 46:23–27. doi: 10.1016/S0143-7208(00)00032-2 CrossRefGoogle Scholar
  10. 10.
    Wan J, Zheng CJ, Fung M-K, Liu XK, Lee CS, Zhang XH (2012) Multifunctional electron-transporting indolizine derivatives for highly efficient blue fluorescence, orange phosphorescence host and two-color based white OLEDs. J Mater Chem 22:4502–4510. doi: 10.1039/C2JM14904D CrossRefGoogle Scholar
  11. 11.
    Becuwe M, Landy D, Delattre F, Cazier F, Fourmentin S (2008) Fluorescent indolizine-\(\upbeta \)-cyclodextrin derivatives for the detection of volatile organic compounds. Sensors 8:3689–3705. doi: 10.3390/s8063689 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kapat A, Nyfeler E, Giuffredi GT, Renaud P (2009) Intramolecular Schmidt reaction involving primary azidoalcohols under nonacidic conditions: synthesis of indolizidine (\(-\))-167B. J Am Chem Soc 131:17746–17747. doi: 10.1021/ja908933s CrossRefPubMedGoogle Scholar
  13. 13.
    Kostik EI, Abiko A, Oku A (2001) Chichibabin indolizine synthesis revisited: synthesis of indolizinones by solvolysis of 4-alkoxycarbonyl-3-oxotetrahydroquinolizinium ylides. J Org Chem 66:2618–2623. doi: 10.1021/jo0011639 CrossRefPubMedGoogle Scholar
  14. 14.
    Basavaiah D, Devendar B, Lenin DV, Satyanarayana T (2009) The Baylis–Hillman bromides as versatile synthons: a facile one-pot synthesis of indolizine and benzofused indolizine frameworks. Synlett 3:411–416. doi: 10.1055/s-0028-1087533 CrossRefGoogle Scholar
  15. 15.
    Kakehi A, Ito ST, Maeda M, Takeda R, Nishimura M, Tamashima M, Yamaguchi T (1978) Synthesis using allylidenedihydropyridines. 4. Novel synthetic methods for indolizine derivatives. J Org Chem 43:4837–4840. doi: 10.1021/jo00419a026 CrossRefGoogle Scholar
  16. 16.
    Rotaru AV, Druta ID, Oeser T, Müller TJJ (2005) A novel coupling 1,3-dipolar cycloaddition sequence as a three-component approach to highly fluorescent indolizines. Helv Chim Acta 88:1798–1812. doi: 10.1002/hlca.200590141 CrossRefGoogle Scholar
  17. 17.
    Fang J, Yan C-Y (2014) Synthesis of 6a,6b,13,13a-tetrahydro-6H-5-oxa-12a-azadibenzo[\(a, g\)]fluorene derivatives via cycloaddition reactions of isoquinolinium salts with 3-nitrochromenes. Mol Divers 18:91–99. doi: 10.1007/s11030-013-9489-z CrossRefPubMedGoogle Scholar
  18. 18.
    Liu Y, Zhang Y, Shen YM, Hu HW, Xu JH (2010) Regioselective synthesis of 3-acylindolizines and benzo-analogues via 1,3-dipolar cycloadditions of \(N\)-ylides with maleic anhydride. Org Biomol Chem 8:2449–2456. doi: 10.1039/C000277A CrossRefPubMedGoogle Scholar
  19. 19.
    Gulías M, Mascareñas JL (2016) Metal-catalyzed annulations through activation and cleavage of C–H bonds. Angew Chem Int Ed 55:2–22. doi: 10.1002/anie.201511567 CrossRefGoogle Scholar
  20. 20.
    Yeung CS, Dong VM (2011) Catalytic dehydrogenative cross-coupling: forming carbon–carbon bonds by oxidizing two carbon–hydrogen bonds. Chem Rev 111:1215–1292. doi: 10.1021/cr100280d CrossRefPubMedGoogle Scholar
  21. 21.
    Xu L-M, Li B-J, Yang Z, Shi Z-J (2010) Organopalladium(IV) chemistry. Chem Soc Rev 39:712–733. doi: 10.1039/B809912J CrossRefPubMedGoogle Scholar
  22. 22.
    Naidu PS, Majumder S, Bhuyan PJ (2015) Iodine-catalyzed \({ sp}^{3}\) C–H bond activation by selenium dioxide: synthesis of diindolylmethanes and di(3-indolyl)selanides. Mol Divers 19:685–693. doi: 10.1007/s11030-015-9605-3 CrossRefPubMedGoogle Scholar
  23. 23.
    Zhu Y-P, Liu M-C, Jia F-C, Yuan J-J, Gao Q-H, Lian M, Wu A-X (2012) Metal-free \({ sp}^{3}\) C–H bond dual-(het)arylation: \(\text{ I }_{2}\)-promoted domino process to construct 2,2-bisindolyl-1-arylethanones. Org Lett 14:3393–3395. doi: 10.1021/ol301366p Google Scholar
  24. 24.
    Gao M, Yang Y, Wu Y-D, Deng C, Shu W-M, Zhang D-X, Cao L-P, She N-F, Wu A-X (2010) An efficient synthesis of hydantoins via sustainable integration of coupled domino processes. Org Lett 12:4026–4029. doi: 10.1021/ol1015948 CrossRefPubMedGoogle Scholar
  25. 25.
    Campos KR (2007) Direct \({ sp}^{3}\) C–H bond activation adjacent to nitrogen in heterocycles. Chem Soc Rev 36:1069–1084. doi: 10.1039/B607547A CrossRefPubMedGoogle Scholar
  26. 26.
    Li C-J (2009) Cross-dehydrogenative coupling (CDC): exploring C–C bond formations beyond functional group transformations. Acc Chem Res 42:335–344. doi: 10.1021/ar800164n CrossRefPubMedGoogle Scholar
  27. 27.
    Chen X, Engle KM, Wang DH, Yu JQ (2009) Palladium(II)-Catalyzed C–H activation/C–C cross-coupling reactions: versatility and practicality. Angew Chem Int Ed 48:5094–5115. doi: 10.1002/anie.200806273 CrossRefGoogle Scholar
  28. 28.
    Jazzar R, Hitce J, Renaudat A, Sofack-Kreutzer J, Baudoin O (2010) Functionalization of organic molecules by transition-metal-catalyzed \(\text{ C }({ sp}^{3})\)–H activation. Chem A Eur J 16:2654–2672. doi: 10.1002/chem.200902374 CrossRefGoogle Scholar
  29. 29.
    Schipper DJ, Campeau L-C, Fagnou K (2009) Catalyst and base controlled site-selective \({ sp}^{2}\) and \({ sp}^{3}\) direct arylation of azine \(N\)-oxides. Tetrahedron 65:3155–3164. doi: 10.1016/j.tet.2008.12.004 CrossRefGoogle Scholar
  30. 30.
    Mousseau JJ, Larivee A, Charette AB (2008) Palladium-catalyzed benzylic C–H insertion of 2-substituted \(N\)-iminopyridinium ylides. Org Lett 10:1641–1643. doi: 10.1021/ol800396v CrossRefPubMedGoogle Scholar
  31. 31.
    Kumar A, Gupta G, Srivastava S (2011) Synthesis of new class of alkyl azarene pyridinium zwitterions via iodine mediated \({ sp}^{3}\) C–H bond activation. Org Lett 13:6366–6369. doi: 10.1021/ol202654j CrossRefPubMedGoogle Scholar
  32. 32.
    Kumar A, Gupta LP, Kumar M (2013) Metal-free \(\text{ C }(\text{ sp }^{3})\)-H bond activation: first synthesis of diaryl-pyridinium-azaarene-butenolate zwitterionic salts on chalcones. RSC Adv 3:18771–18774. doi: 10.1039/C3RA42761G
  33. 33.
    Yavari I, Naeimabadi M, Halvagar MR (2016) \(\text{ FeCl }_{3}\)-catalyzed formation of indolizine derivatives via the 1,3-dipolar cycloaddition reaction between azomethine ylides and chalcones or dibenzylideneacetones. Tetrahedron Lett 57:3718–3721. doi: 10.1016/j.tetlet.2016.07.004 CrossRefGoogle Scholar
  34. 34.
    Yavari I, Naeimabadi M, Hosseinpour R, Halvagar MR (2016) A one-pot synthesis of highly functionalized indolizines by 1,3-dipolar cycloaddition of azomethine ylides and phosphorylated hydroxyketenimines. Synlett 27:2601–2605. doi: 10.1055/s-0035-1562523 CrossRefGoogle Scholar
  35. 35.
    Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van der Streek J (2006) Mercury: visualization and analysis of crystal structures. J Appl Cryst 39:453–457. doi: 10.1107/S002188980600731X CrossRefGoogle Scholar
  36. 36.
    Burnett MN, Johnson CK (1996) ORTEP-III Report ORNL-6895. Oak Ridge National Laboratory, TennesseeGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Issa Yavari
    • 1
  • Jamil Sheykhahmadi
    • 1
  • Maryam Naeimabadi
    • 1
  • Mohammad Reza Halvagar
    • 2
  1. 1.Department of ChemistryTarbiat Modares UniversityTehranIran
  2. 2.Department of Inorganic ChemistryChemistry and Chemical Engineering Research Center of IranTehranIran

Personalised recommendations