Molecular Diversity

, Volume 20, Issue 3, pp 605–610 | Cite as

Combinatorial synthesis of deuterium-enriched (S)-oxybutynin

  • Feng Li
  • Wenfeng Jiang
  • Anthony W. Czarnik
  • Wenbao Li
Original Article


The concept of deuterium enrichment has gained more attention due to its advantages in the studies of clinical pharmacokinetics and metabolic profiles. In addition, it is cost and time efficient to develop deuterium-enriched drugs. Herein we built a combinatorial library of deuterated (S)-oxybutynins which all 8 D-compounds were characterized by MS, \(^{1}\hbox {H}\) NMR and \(^{ 13}\)C NMR.


Deuterium Oxybutynin Combinatorial chemistry  Derivatives 

Supplementary material

11030_2016_9660_MOESM1_ESM.docx (2.5 mb)
Supplementary material 1 (docx 2546 KB)


  1. 1.
    Elsig JSJ, Leuenberger D, Schneider REM, Leuenberger MJF, Fischer H, Stocker TF (2009) Stable isotope constraints on holocene carbon cycle changes from an antarctic ice core. Nature 461:507–510. doi: 10.1038/nature08393 CrossRefPubMedGoogle Scholar
  2. 2.
    Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649. doi: 10.1038/35001054 CrossRefPubMedGoogle Scholar
  3. 3.
    Thomas GG (2014) Using deuterium in drug discovery: leaving the label in the drug. J Med Chem 57:3595–3611. doi: 10.1021/jm4007998 CrossRefGoogle Scholar
  4. 4.
    Di CL, Moulin M, Haertlein M, Meilleur F, Christianson DW (2007) Expression, purification, assay and crystal structure of perdeuterated human arginase I. Arch Biochem Biophys 465:82–89. doi: 10.1016/ CrossRefGoogle Scholar
  5. 5.
    Nelson SD, Trager WF (2003) The use of deuterium isotope effects to probe the active site properties, mechanism of cytochrome P450-catalyzed reactions, and mechanisms of metabolically dependent toxicity. Drug Metab Dispos 31:1481–1498. doi: 10.1124/dmd.31.12.1481 CrossRefPubMedGoogle Scholar
  6. 6.
    Bell RP (1974) Liversidge lecture. Recent advances in the study of kinetic hydrogen isotope effects. Chem Soc Rev 3:513–544. doi: 10.1039/cs9740300513 CrossRefGoogle Scholar
  7. 7.
    Samis HV, Baird MB, Massie HR (1974) Deuterium oxide effect on temperature-dependent survival in populations of Drosophila melanogaster. Science 183:427–427. doi: 10.1126/science.183.4123.427 CrossRefPubMedGoogle Scholar
  8. 8.
    Foster AB (1985) Deuterium isotope effects in the metabolism of drugs and xenobiotics: implications for drug design. Adv Drug Res 14:1–40Google Scholar
  9. 9.
    Tung R (2010) The development of deuterium-containing drugs. Innovat Pharmaceut Tech 32:24–26, 28. Doi can’t be found from SciFinder and the website of Innovations in Pharmaceutical TechnologyGoogle Scholar
  10. 10.
    Uttamsingh V, Wells D, Soergel D (2009) CTP-347, a deuterated paroxetine analog exhibits reduced mechanism-based inactivation of CYP2D6 in healthy women. In: Presented at the 38th American College of Clinical PharmacologyGoogle Scholar
  11. 11.
    Sabounjian L, Shipley J, Braman V, Harnett M, Wu L, Turnquist D, Graham P (2012) Design and rationale for randomized, double-blind, placebo-controlled phase 2 study to evaluate the safety and efficacy of CTP-499 in patients with diabetic nephropathy (DN). Adv Chronic Kidney Dis 19:123. doi: 10.1053/j.ackd.2012.02.007 CrossRefGoogle Scholar
  12. 12.
    Reitz AB, Gupta SK, Y Huang, Parker MH, Ryan RR (2007) The preparation and human muscarinic receptor profiling of oxybutynin and N-desethyloxybutynin enantiomers. Med Chem 3:543–545. doi: 10.2174/157340607782360353
  13. 13.
    Anthony WC (2008) Deuterium-enriched oxybutynin. US 2008299219Google Scholar
  14. 14.
    Thomas GG, Sepehr S (2009) Substituted phenylcyclohexylglycolates. US 2009247628Google Scholar
  15. 15.
    Aberg G, McCullough JR (1996) Methods and compositions for treating urinary incontinence using optically pure (S)-oxybutynin. US 5532278Google Scholar
  16. 16.
    Aberg G, McCullough JR (1998) Methods and compositions for treating urinary incontinence using optically pure (S)-oxybutynin. US 5736577Google Scholar
  17. 17.
    Vandenbossche CP, de Croos P, Singh SP, Bakale RP, Wagler TR (2010) Formation of (S)-5-cyclohexyl-5-phenyl-1,3-dioxolane-2,4-dione: a key intermediate in the synthesis of (S)-oxybutynin hydrochloride. Org Process Res Dev 14:921–925. doi: 10.1021/op100021w CrossRefGoogle Scholar
  18. 18.
    Jerussi TP (2001) Methods for treatment of asthma using S-oxybutynin. US 6294582Google Scholar
  19. 19.
    Bakale RP, Lopez JL, Mcconville FX, Vandenbossche CP, Senanayake CH (2000) Synthesis of optically active cyclohexylphenylglycolate esters. US 6140529Google Scholar
  20. 20.
    Bakale RP, Lopez JL, Mcconville FX, Vandenbossche CP, Senanayake CH (1999) Carbonate Intermediates useful in the preparation of optically active cyclohexylphenylglycolate esters. US 5973182Google Scholar
  21. 21.
    Bakale RP, Lopez JL, Mcconville FX, Vandenbossche CP, Senanayake CH (2000) Synthesis of optically active cyclohexylphenylglycolic acid and its esters. WO 0023414Google Scholar
  22. 22.
    Campbell KN, Majewski RF (1965) Substituted aminobutynyl acetates. US 3176019Google Scholar
  23. 23.
    Majewski RF, Campbell KN, Dykstra S, Covington R, Simms JC (1965) Anticholinergic agents-esters of 4-dialkyl(or 4-polymethylene)amino-2-butynols. J Med Chem 8:719–720. doi: 10.1021/jm00329a044 CrossRefGoogle Scholar
  24. 24.
    Adams TC, Dupont AC, Carter JP, Kachur JF, Guzewska ME, Rzeszotarski WJ, Farmer SG, Noronha-Blob L, Kaiser C (1991) Aminoalkynyldithianes. A new class of calcium channel blockers. J Med Chem 34:1585–1593. doi: 10.1021/jm00109a010 CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.School of Medicine and PharmacyOcean University of ChinaQingdaoPeople’s Republic of China
  2. 2.Marine Biomedical Research Institute of QingdaoQingdaoPeople’s Republic of China
  3. 3.Department of ChemistryUniversity of Nevada, RenoRenoUSA

Personalised recommendations