Advertisement

Molecular Diversity

, Volume 20, Issue 3, pp 771–780 | Cite as

Activity landscape analysis of novel 5\(\upalpha \)-reductase inhibitors

  • J. Jesús Naveja
  • Francisco Cortés-Benítez
  • Eugene Bratoeff
  • José L. Medina-Franco
Short Communication

Abstract

Inhibitors of the enzyme 5\(\upalpha \)-reductase (5aR) are promising therapeutic agents for the treatment of benign prostatic hyperplasia (BPH) and prostate cancer. The lack of structural data of the enzyme 5aR prompts the application of ligand-based approaches to systematically explore the activity landscape of 5aR inhibitors. As part of an effort to develop inhibitors of this enzyme for the treatment of BPH, herein we discuss a chemoinformatic-based analysis of the activity landscape of a novel set of 53 novel pregnane and androstene compounds. It was found that, in general, for each pair of compounds in the set, as the structure similarity of the compounds increases the corresponding potency difference decreases. These results are in agreement with an overall smooth activity landscape. However, two potent activity cliff generators were identified pointing to specific small structural changes that have a large impact on the inhibition of 5aR.

Keywords

Activity cliff generators Benign prostatic hyperplasia Chemical space Chemoinformatics Prostatic 5\(\upalpha \)-reductase Structure–activity relationships 

Abbreviations

5aR

5\(\upalpha \)-Reductase

ALM

Activity landscape modeling

AR

Androgen receptor

BPH

Benign prostatic hyperplasia

DHT

5\(\upalpha \)-Dihydrotestosterone

ECFPs

Extended connectivity fingerprints

FIDE

Finasteride

PCa

Prostate cancer

PCA

Principal component analysis

SARs

Structure–activity relationships

SAS

Structure–activity similarity

T

Testosterone

Tc

Tanimoto coefficient

Notes

Acknowledgments

FCB thanks the Consejo Nacional de Ciencia y Tecnología (CONACyT) by the Fellowship Awarded (Number 255249) to carry out the PhD studies. JLMF acknowledges the National Autonomous University of Mexico (UNAM) for Grant PAIP 5000-9163.

Supplementary material

11030_2016_9659_MOESM1_ESM.pdf (324 kb)
Supplementary material 1 (pdf 324 KB)

References

  1. 1.
    Azzouni F, Godoy A, Li Y, Mohler J (2012) The 5 alpha-reductase isozyme family: a review of basic biology and their role in human diseases. Adv Urol 2012:18. doi: 10.1155/2012/530121 CrossRefGoogle Scholar
  2. 2.
    Bull HG, Garcia-Calvo M, Andersson S, Baginsky WF, Chan HK, Ellsworth DE, Miller RR, Stearns RA, Bakshi RK, Rasmusson GH, Tolman RL, Myers RW, Kozarich JW, Harris GS (1996) Mechanism-based inhibition of human steroid 5\(\alpha \)-reductase by finasteride: enzyme-catalyzed formation of NADP–dihydrofinasteride, a potent bisubstrate analog inhibitor. J Am Chem Soc 118:2359–2365. doi: 10.1021/ja953069t CrossRefGoogle Scholar
  3. 3.
    Saartok T, Dahlberg E, Gustafsson J (1984) Relative binding affinity of anabolic–androgenic steroids: comparison of the binding to the androgen receptors in skeletal muscle and in prostate, as well as to sex hormone-binding globulin. Endocrinology 114:2100–2106. doi: 10.1210/endo-114-6-2100 CrossRefPubMedGoogle Scholar
  4. 4.
    Gao W, Bohl CE, Dalton JT (2005) Chemistry and structural biology of androgen receptor. Chem Rev 105:3352–3370. doi: 10.1021/cr020456u CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Schauer IG, Rowley DR (2011) The functional role of reactive stroma in benign prostatic hyperplasia. Differentiation 82:200–210. doi: 10.1016/j.diff.2011.05.007 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Salvador JAR, Pinto RMA, Silvestre SM (2013) Steroidal 5\(\alpha \)-reductase and 17\(\alpha \)-hydroxylase/17,20-lyase (cyp17) inhibitors useful in the treatment of prostatic diseases. J Steroid Biochem Mol Biol 137:199–222. doi: 10.1016/j.jsbmb.2013.04.006 CrossRefPubMedGoogle Scholar
  7. 7.
    Aggarwal S, Thareja S, Verma A, Bhardwaj TR, Kumar M (2010) An overview on 5\(\alpha \)-reductase inhibitors. Steroids 75:109–153. doi: 10.1016/j.steroids.2009.10.005 CrossRefPubMedGoogle Scholar
  8. 8.
    Thompson IM, Goodman PJ, Tangen CM, Lucia MS, Miller GJ, Ford LG, Lieber MM, Cespedes RD, Atkins JN, Lippman SM, Carlin SM, Ryan A, Szczepanek CM, Crowley JJ, Coltman CA (2003) The influence of finasteride on the development of prostate cancer. N Engl J Med 349:215–224. doi: 10.1056/NEJMoa030660 CrossRefPubMedGoogle Scholar
  9. 9.
    Volpi R, Maccarini PA, Boni S, Chiodera P, Coiro V (1995) Case report: finasteride-induced gynecomastia in a 62-year-old man. Am J Med Sci 309:322–325CrossRefPubMedGoogle Scholar
  10. 10.
    Cabeza M, Heuze I, Bratoeff E, Murillo E, Ramirez E, Lira A (2001) New progesterone esters as 5alpha-reductase inhibitors. Chem Pharm Bull 49:1081–1084. doi: 10.1248/cpb.49.1081 CrossRefPubMedGoogle Scholar
  11. 11.
    Bratoeff E, Ramírez E, Flores E, Valencia N, Sánchez M, Heuze I, Cabeza M (2003) Molecular interactions of new pregnenedione derivatives. Chem Pharm Bull 51:1132–1136. doi: 10.1248/cpb.51.1132 CrossRefPubMedGoogle Scholar
  12. 12.
    Ramírez E, Cabeza M, Bratoeff E, Heuze I, Pérez V, Valdez D, Ochoa M, Teran N, Jimenez G, Ramírez T (2005) Synthesis and pharmacological evaluation of new progesterone esters as 5alpha-reductase inhibitors. Chem Pharm Bull 53:1515–1518. doi: 10.1248/cpb.53.1515 CrossRefPubMedGoogle Scholar
  13. 13.
    Cabeza M, Flores E, Heuze I, Sánchez M, Bratoeff E, Ramírez E, Francolugo VA (2004) Novel 17 substituted pregnadiene derivatives as 5\(\alpha \)-reductase inhibitors and their binding affinity for the androgen receptor. Chem Pharm Bull 52:535–539. doi: 10.1248/cpb.52.535 CrossRefPubMedGoogle Scholar
  14. 14.
    Bratoeff E, Sainz T, Cabeza M, Heuze I, Recillas S, Pérez V, Rodríguez C, Segura T, Gonzáles J, Ramírez E (2007) Steroids with a carbamate function at C-17, a novel class of inhibitors for human and hamster steroid 5\(\alpha \)-reductase. J Steroid Biochem Mol Biol 107:48–56. doi: 10.1016/j.jsbmb.2007.03.038 CrossRefPubMedGoogle Scholar
  15. 15.
    Bratoeff E, Cabeza M, Pérez-Ornelas V, Recillas S, Heuze I (2008) In vivo and in vitro effect of novel 4,16-pregnadiene-6,20-dione derivatives, as 5\(\alpha \)-reductase inhibitors. J Steroid Biochem Mol Biol 111:275–281. doi: 10.1016/j.jsbmb.2008.06.014 CrossRefPubMedGoogle Scholar
  16. 16.
    Cabeza M, Bratoeff E, Gómez G, Heuze I, Rojas A, Ochoa M, Palomino MA, Revilla C (2008) Synthesis and biological effect of halogen substituted phenyl acetic acid derivatives of progesterone as potent progesterone receptor antagonists. J Steroid Biochem Mol Biol 111:232–239. doi: 10.1016/j.jsbmb.2008.06.011 CrossRefPubMedGoogle Scholar
  17. 17.
    Pérez-Ornelas V, Cabeza M, Bratoeff E, Heuze I, Sánchez M, Ramírez E, Naranjo-Rodríguez E (2005) New 5\(\alpha \)-reductase inhibitors: in vitro and in vivo effects. Steroids 70:217–224. doi: 10.1016/j.steroids.2004.11.008 CrossRefPubMedGoogle Scholar
  18. 18.
    Cabeza M, Zambrano A, Heuze I, Carrizales E, Palacios A, Segura T, Valencia N, Bratoeff E (2009) Novel C-6 substituted and unsubstituted pregnane derivatives as 5\(\alpha \)-reductase inhibitors and their effect on hamster flank organs diameter size. Steroids 74:793–802. doi: 10.1016/j.steroids.2009.04.009 CrossRefPubMedGoogle Scholar
  19. 19.
    Bratoeff E, Zambrano A, Heuze I, Palacios A, Ramírez D, Cabeza M (2009) Synthesis and biological activity of progesterone derivatives as 5\(\alpha \)-reductase inhibitors, and their effect on hamster prostate weight. J Enzyme Inhib Med Chem 25:306–311. doi: 10.3109/14756360903179401 CrossRefGoogle Scholar
  20. 20.
    Bratoeff E, García P, Heuze Y, Soriano J, Mejía A, Labastida AM, Valencia N, Cabeza M (2010) Molecular interactions of progesterone derivatives with 5\(\alpha \)-reductase types 1 and 2 and androgen receptors. Steroids 75:499–505. doi: 10.1016/j.steroids.2010.03.006 CrossRefPubMedGoogle Scholar
  21. 21.
    Garrido M, Bratoeff E, Bonilla D, Soriano J, Heuze Y, Cabeza M (2011) New steroidal lactones as 5\(\alpha \)-reductase inhibitors and antagonists for the androgen receptor. J Steroid Biochem Mol Biol 127:367–373. doi: 10.1016/j.jsbmb.2011.07.001 CrossRefPubMedGoogle Scholar
  22. 22.
    Arellano Y, Bratoeff E, Garrido M, Soriano J, Heuze Y, Cabeza M (2011) New ester derivatives of dehydroepiandrosterone as 5\(\alpha \)-reductase inhibitors. Steroids 76:1241–1246. doi: 10.1016/j.steroids.2011.05.015 CrossRefPubMedGoogle Scholar
  23. 23.
    Bratoeff E, Segura T, Recillas S, Carrizales E, Palacios A, Heuze I, Cabeza M (2009) Aromatic esters of progesterone as 5\(\alpha \)-reductase and prostate growth inhibitors. J Enzyme Inhib Med Chem 24:655–662. doi: 10.1080/14756360802323720 CrossRefPubMedGoogle Scholar
  24. 24.
    Cabeza M, Bratoeff E, Heuze I, Rojas A, Terán N, Ochoa M, Teresa Ramírez-Apan M, Ramírez E, Pérez V, Gracia I (2006) New progesterone derivatives as inhibitors of 5\(\alpha \)-reductase enzyme and prostate cancer cell growth. J Enzyme Inhib Med Chem 21:371–378. doi: 10.1080/14756360600748474 CrossRefPubMedGoogle Scholar
  25. 25.
    Robinson DD, Winn PJ, Lyne PD, Richards WG (1999) Self-organizing molecular field analysis: a tool for structure–activity studies. J Med Chem 42:573–583. doi: 10.1021/jm9810607 CrossRefPubMedGoogle Scholar
  26. 26.
    Aggarwal S, Thareja S, Bhardwaj TR, Kumar M (2010) Self-organizing molecular field analysis on pregnane derivatives as human steroidal 5\(\alpha \)-reductase inhibitors. Steroids 75:411–418. doi: 10.1016/j.steroids.2010.02.005 CrossRefPubMedGoogle Scholar
  27. 27.
    Aggarwal S, Thareja S, Bhardwaj TR, Kumar M (2010) 3D-QSAR studies on unsaturated 4-azasteroids as human 5\(\alpha \)-reductase inhibitors: a self organizing molecular field analysis approach. Eur J Med Chem 45:476–481. doi: 10.1016/j.ejmech.2009.10.030 CrossRefPubMedGoogle Scholar
  28. 28.
    Myint KZ, Xie X-Q (2010) Recent advances in fragment-based QSAR and multi-dimensional QSAR methods. Int J Mol Sci 11:3846. doi: 10.3390/ijms11103846 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Bajorath J (2012) Modeling of activity landscapes for drug discovery. Expert Opin Drug Discov 7:463–473. doi: 10.1517/17460441.2012.679616 CrossRefPubMedGoogle Scholar
  30. 30.
    Stumpfe D, Hu Y, Dimova D, Bajorath J (2014) Recent progress in understanding activity cliffs and their utility in medicinal chemistry. J Med Chem 57:18–28. doi: 10.1021/jm401120g CrossRefPubMedGoogle Scholar
  31. 31.
    Guha R (2012) Exploring structure–activity data using the landscape paradigm. Wiley Interdiscip Rev Comput Mol Sci 2:829–841. doi: 10.1002/wcms.1087 CrossRefGoogle Scholar
  32. 32.
    Naveja JJ, Medina-Franco JL (2015) Activity landscape of DNA methyltransferase inhibitors bridges chemoinformatics with epigenetic drug discovery. Expert Opin Drug Discov 10:1059–1070. doi: 10.1517/17460441.2015.1073257 CrossRefPubMedGoogle Scholar
  33. 33.
    Maggiora GM (2006) On outliers and activity cliffs—why QSAR often disappoints. J Chem Inf Model 46:1535. doi: 10.1021/ci060117s CrossRefPubMedGoogle Scholar
  34. 34.
    Rojas-Aguirre Y, Medina-Franco J (2014) Analysis of structure–caco-2 permeability relationships using a property landscape approach. Mol Divers 18:599–610. doi: 10.1007/s11030-014-9514-x CrossRefPubMedGoogle Scholar
  35. 35.
    Pérez-Villanueva J, Santos R, Hernández-Campos A, Giulianotti MA, Castillo R, Medina-Franco JL (2011) Structure–activity relationships of benzimidazole derivatives as antiparasitic agents: dual activity-difference (DAD) maps. Med Chem Commun 2:44–49. doi: 10.1039/C0MD00159G CrossRefGoogle Scholar
  36. 36.
    Guha R, VanDrie JH (2008) Structure–activity landscape index: identifying and quantifying activity cliffs. J Chem Inf Model 48:646–658. doi: 10.1021/ci7004093 CrossRefPubMedGoogle Scholar
  37. 37.
    Medina-Franco J, Navarrete-Vázquez G, Méndez-Lucio O (2015) Property landscape modeling is at the interface of chemoinformatics and experimental sciences. Future Med Chem 7:1197–1211. doi: 10.4155/fmc.15.51 CrossRefPubMedGoogle Scholar
  38. 38.
    Irwin JJ, Shoichet BK (2005) ZINC—a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177–182. doi: 10.1021/ci049714+ CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Medina-Franco JL, Martínez-Mayorga K, Giulianotti MA, Houghten RA, Pinilla C (2008) Visualization of the chemical space in drug discovery. Curr Comput Aided Drug Des 4:322–333. doi: 10.2174/157340908786786010 CrossRefGoogle Scholar
  40. 40.
    Medina-Franco JL, Maggiora GM, Giulianotti MA, Pinilla C, Houghten RA (2007) A similarity-based data-fusion approach to the visual characterization and comparison of compound databases. Chem Biol Drug Des 70:393–412. doi: 10.1111/j.1747-0285.2007.00579.x CrossRefPubMedGoogle Scholar
  41. 41.
    Rogers D, Brown RD, Hahn M (2005) Using extended-connectivity fingerprints with Laplacian-modified Bayesian analysis in high-throughput screening follow-up. J Biomol Screen 10:682–686. doi: 10.1177/1087057105281365 CrossRefPubMedGoogle Scholar
  42. 42.
    Stumpfe D, Bajorath J (2012) Exploring activity cliffs in medicinal chemistry. J Med Chem 55:2932–2942. doi: 10.1021/jm201706b CrossRefPubMedGoogle Scholar
  43. 43.
    Medina-Franco JL, Maggiora GM (2014) Molecular similarity analysis. In: Bajorath J (ed) Chemoinformatics for drug discovery. Wiley, New York, pp 343–399. doi: 10.1002/9781118742785.ch15 Google Scholar
  44. 44.
    López-Vallejo F, Castillo R, Yépez-Mulia L, Medina-Franco JL (2011) Benzotriazoles and indazoles are scaffolds with biological activity against Entamoeba histolytica. J Biomol Screen 16:862–868. doi: 10.1177/1087057111414902 CrossRefPubMedGoogle Scholar
  45. 45.
    Shanmugasundaram V, Maggiora GM (2001) Characterizing property and activity landscapes using an information-theoretic approach. Cinf-032. In: Paper presented at the 222nd ACS national meeting, Chicago, IL, 26–30 AugustGoogle Scholar
  46. 46.
    Medina-Franco JL, Waddell J (2012) Towards the bioassay activity landscape modeling in compound databases. J Mex Chem Soc 56:163–168Google Scholar
  47. 47.
    Yongye AB, Medina-Franco JL (2013) Systematic characterization of structure–activity relationships and ADMET compliance: a case study. Drug Discov Today 18:732–739. doi: 10.1016/j.drudis.2013.04.002 CrossRefPubMedGoogle Scholar
  48. 48.
    Medina-Franco JL (2012) Scanning structure–activity relationships with structure–activity similarity and related maps: from consensus activity cliffs to selectivity switches. J Chem Inf Model 52:2485–2493. doi: 10.1021/ci300362x CrossRefPubMedGoogle Scholar
  49. 49.
    Pérez-Villanueva J, Santos R, Hernández-Campos A, Giulianotti MA, Castillo R, Medina-Franco JL (2010) Towards a systematic characterization of the antiprotozoal activity landscape of benzimidazole derivatives. Bioorg Med Chem 18:7380–7391. doi: 10.1016/j.bmc.2010.09.019 CrossRefPubMedGoogle Scholar
  50. 50.
    Mendez-Lucio O, Perez-Villanueva J, Castillo R, Medina-Franco JL (2012) Identifying activity cliff generators of PPAR ligands using SAS maps. Mol Inform 31:837–846. doi: 10.1002/minf.201200078 CrossRefGoogle Scholar
  51. 51.
    Rogers D, Hahn M (2010) Extended-connectivity fingerprints. J Chem Inf Model 50:742–754. doi: 10.1021/ci100050t CrossRefPubMedGoogle Scholar
  52. 52.
    Iyer P, Stumpfe D, Vogt M, Bajorath J, Maggiora GM (2013) Activity landscapes, information theory, and structure–activity relationships. Mol Inform 32:421–430. doi: 10.1002/minf.201200120
  53. 53.
    Naveja JJ, Medina-Franco JL (2015) Activity landscape sweeping: insights into the mechanism of inhibition and optimization of DNMT1 inhibitors. RSC Adv 5:63882–63895. doi: 10.1039/C5RA12339A CrossRefGoogle Scholar
  54. 54.
    Flores E, Bratoeff E, Cabeza M, Ramirez E, Quiroz A, Heuze I (2003) Steroid 5\(\alpha \)-reductase inhibitors. Minirev Med Chem 3:225–237. doi: 10.2174/1389557033488196 CrossRefGoogle Scholar
  55. 55.
    Gangloff A, Shi R, Nahoum V, Lin S-X (2002) Pseudo-symmetry of C19-steroids, alternative binding orientations and multispecificity in human estrogenic 17\(\beta \)-hydroxysteroid dehydrogenase. FASEB J. doi: 10.1096/fj.02-0397fje

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • J. Jesús Naveja
    • 1
    • 2
  • Francisco Cortés-Benítez
    • 1
  • Eugene Bratoeff
    • 1
  • José L. Medina-Franco
    • 1
  1. 1.Departamento de Farmacia, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoMexicoMexico
  2. 2.Facultad de Medicina, PECEMUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations