Molecular Diversity

, Volume 20, Issue 1, pp 299–344 | Cite as

Molecular diversity of spirooxindoles. Synthesis and biological activity

  • Tetyana L. Pavlovska
  • Ruslan Gr. Redkin
  • Victoria V. Lipson
  • Dmytro V. Atamanuk
Comprehensive Review


Spirooxindoles are important synthetic targets possessing extended biological activity and drug discovery applications. This review focuses on the various strategies for the enantioselective synthesis of spirocyclic oxindoles relying on reports over the past decade and from earlier work. The spirooxindoles in this review are separated into three structural classes, and then further categorized into the method type from which the spirocycle is generated.


Spiroheterocyclic systems Isatin Oxindoles Multicomponent reactions (MCRs) Cycloadditions Highly functionalised molecules Diversity-oriented synthesis DOS 


  1. 1.
    Lipson VV, Zamigajlo LL, Petrova ON (2011) Development of 11\({\beta }\)-HSD1 inhibitors for the treatment of metabolic syndrome. Ukrainica Bioorganica Acta 2:3–13.
  2. 2.
    Stuart L (2000) Schreiber target-oriented and diversity-oriented organic synthesis in drug discovery. Science 17:1964–1969. doi: 10.1126/science.287.5460.1964 Google Scholar
  3. 3.
    Bindra JS (1973) Chapter 2 oxindole alkaloids. Alkaloids: Chem Physiol 14:83–121. doi: 10.1016/S1876-0813(08)60219-5 Google Scholar
  4. 4.
    Schun Y, Cordell GA (1985) 14\({\beta }\)-Hydroxygelsedine, a new oxindole alkaloid from Gelsemium sempervirens. J Nat Prod 48:788–791. doi: 10.1021/np50041a012 CrossRefPubMedGoogle Scholar
  5. 5.
    Kitajima M (2007) Chemical studies on monoterpenoid indole alkaloids from medicinal plant resources Gelsemium and Ophiorrhiza. J Nat Med 61:14–23. doi: 10.1007/s11418-006-0101-z CrossRefGoogle Scholar
  6. 6.
    Stratmann K, Moore RE, Bonjouklian R, Deeter JB, Patterson GML, Shaffer S, Smith CD, Smitka TA (1994) Welwitindolinones, unusual alkaloids from the blue-green algae Hapalosiphon welwitschii and Westiella intricata. Relationship to fischerindoles and hapalinodoles. J Am Chem Soc 116:9935–9942. doi: 10.1021/ja00101a015 CrossRefGoogle Scholar
  7. 7.
    James MNG, Williams GJB (1972) The molecular and crystal structure of an oxindole alkaloid (6-Hydroxy-2’-(2-methylpropyl)-3,3’ spirotetrahydropyrrolidino-oxindole). Can J Chem 50:2407–2412. doi: 10.1139/v72-386 CrossRefGoogle Scholar
  8. 8.
    Pellegrini C, Weher M, Borschberg H-J (1996) Total synthesis of (+)-elacomine and (-)-isoelacomine, two hitherto unnamed oxindole alkaloids from Elueagnus cornrnutata. Helv Chim Acta 79:151–168. doi: 10.1002/hlca.19960790116 CrossRefGoogle Scholar
  9. 9.
    Jossang A, Jossang P, Hadi HA, Sévenet T, Bodo B (1991) Horsfiline, an oxindole alkaloid from Horsfieldia superba. J Org Chem 56:6527–6530. doi: 10.1021/jo00023a016 CrossRefGoogle Scholar
  10. 10.
    Kornet MJ, Thio AP (1976) Oxindole-3-spiropyrrolidines and -piperidines. Synthesis and local anesthetic activity. J Med Chem 19:892–898. doi: 10.1021/jm00229a007 CrossRefPubMedGoogle Scholar
  11. 11.
    Anderton N, Cockrum PA, Colegate SM, Edgar JA, Flower K, Vit I, Willing RI (1998) Oxindoles from Phalaris coerulescens. Phytochem 48:437–439. doi: 10.1016/S0031-9422(97)00946-1 CrossRefGoogle Scholar
  12. 12.
    Kosuge T, Tsuj K, Hirai K, Yamaguchi K, Okamoto T, Iitaka Y (1981) Isolation and structure determination of a new marine toxin, neosurugatoxin, from the Japanese Ivory Shell. Tetrahedron Lett 2:3417–3420. doi: 10.1016/S0040-4039(01)81920-1 CrossRefGoogle Scholar
  13. 13.
    Lerchner A, Carreira EM (2006) Synthesis of \((\pm )\)-strychnofoline via a highly convergent selective annulation reaction. Chem Eur J 12:8208–8219. doi: 10.1002/chem.200600957 CrossRefPubMedGoogle Scholar
  14. 14.
    Beecram AF, Hart K, John SR (1968) Lambert the stereochemistry of oxindole alkaloids: uncarines A, B (formosanine), C (pteropodine), D (speciophylline), E (isopteropodine), and F. Aust J Chem 21:491–504. doi: 10.1071/CH9680491 CrossRefGoogle Scholar
  15. 15.
    Pandey R, Singh SC, Gupta MM (2006) Heteroyohimbinoid type oxindole alkaloids from Mitragyna parvifolia. Phytochem 67:2164–2169. doi: 10.1016/j.phytochem.2006.06.017 CrossRefGoogle Scholar
  16. 16.
    Heitzman ME, Neto CC, Winiarz E, Vaisberg AJ, Hammond GB (2005) Ethnobotany, phytochemistry and pharmacology of Uncaria (Rubiaceae). Phytochem 66:5–29. doi: 10.1016/j.phytochem.2004.10.022 CrossRefGoogle Scholar
  17. 17.
    Kang TH, Matsumoto K, Tohda M, Murakami Y, Takayama H, Kitajima M, Aimi N, Watanabe H (2002) Pteropodine and isopteropodine positively modulate the function of rat muscarinic M\(_{1}\) and 5-HT\(_{2}\) receptors expressed in Xenopus oocyte. Eur J Pharmacol 444:39–45. doi: 10.1016/S0014-2999(02)01608-4 CrossRefPubMedGoogle Scholar
  18. 18.
    Cui C-B, Kakeya H, Osada H (1996) Novel mammalian cell cycle lnhibitors, spirotryprostatins a and b, produced by Aspergillusfumigatus, which inhibit mammalian cell cycle at G2/M phase. Tetrahedron 52:12651–12666. doi: 10.1016/0040-4020(96)00737-5 CrossRefGoogle Scholar
  19. 19.
    Cui C-B, Kakeya H, Osada H (1996) Spirotryprostatin B, a novel mammalian cell cycle inhibitor produced by Aspergillus fumigatus. J Antibiot (Tokyo) 49:832–835. doi: 10.7164/antibiotics.49.832 CrossRefGoogle Scholar
  20. 20.
    Ket D, Lu Y, Nikolovska-Coleska Z, Wang G, Qiu S, Shangary S, Gao W, Qin D, Stuckey J, Krajewski K, Roller PP, Wang S (2006) Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction. J Med Chem 49:3432–3435. doi: 10.1021/jm051122a CrossRefGoogle Scholar
  21. 21.
    Yu S, Qin D, Shangary S, Chen J, Wang G, Ding K, McEachern D, Qiu S, Nikolovska-Coleska Z, Miller R, Kang S, Yang D, Wang S (2009) Potent and orally active small-molecule inhibitors of the MDM2-p53 interaction. J Med Chem 52:7970–7973. doi: 10.1021/jm901400z CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Williams RM, Cox RJ (2003) Paraherquamides, brevianamides, and asperparalines: laboratory synthesis and biosynthesis. An Interim Rep. Acc Chem Res 36:127–139. doi: 10.1021/ar020229e CrossRefGoogle Scholar
  23. 23.
    Sunderhaus JD, Sherman DH, Williams RM (2011) Studies on the biosynthesis of the stephacidin and notoamide natural products: a stereochemical and genetic conundrum. Israel J Chem 51:442–452. doi: 10.1002/ijch.201100016 CrossRefGoogle Scholar
  24. 24.
    Birch AJ, Wright JJ (1969) The brevianamides: a new class of fungal alkaloid. J Chem Soc Chem Commun 12:644–645. doi: 10.1039/C2969000644B CrossRefGoogle Scholar
  25. 25.
    Paterson RRM, Simmonds MJS, Kemmelmeier C, Blaney WM (1990) Effects of brevianamide A, its photolysis product brevianamide D, and ochratoxin A from two Penicillium strains on the insect pests Spodoptera frugiperda and Heliothis virescens. Mycol Res 94:538–542. doi: 10.1016/S0953-7562(10)80017-6 CrossRefGoogle Scholar
  26. 26.
    Auclair K, Sutherland A, Kennedy J, Witter DJ, Van den Heever JP, Hutchinson CR, Vederas JC (2000) Lovastatin nonaketide synthase catalyzes an intramolecular diels-alder reaction of a substrate analogue. J Am Chem Soc 122:11519–11520. doi: 10.1021/ja003216+ CrossRefGoogle Scholar
  27. 27.
    Greshock TJ, Grubbs AW, Jiao P, Wicklow DT, Gloer JB, Williams RM (2008) Isolation, structure elucidation, and biomimetic total synthesis of versicolamide B, and the isolation of antipodal (-)-stephacidin A and (+)-notoamide B from aspergillus versicolor NRRL 35600. Angew Chem Int Ed 47:3573–3577. doi: 10.1002/anie.200800106 CrossRefGoogle Scholar
  28. 28.
    Takasugi M, Monde K, Katsui N, Shirata A (1987) Spirobrassinin, a novel sulfur-contaning phytoalexin from the daikon Raphanus sati6us L. var. hortensis (Cruciferae). Chem Lett 16:1631–1632. doi: 10.1246/cl.1987.1631 CrossRefGoogle Scholar
  29. 29.
    Suchý M, Kutschy P, Monde K, Goto H, Harada N, Takasugi M, Dzurilla M, Balentová E (2001) Synthesis, absolute configuration, and enantiomeric enrichment of a cruciferous oxindole phytoalexin, (s)-(-)-spirobrassinin, and its oxazoline analog. J Org Chem 66:3940–3947. doi: 10.1021/jo0155052 CrossRefPubMedGoogle Scholar
  30. 30.
    Monde K, Taniguchi T, Miura N, Kutschy P, Curillová Z, Pilátová M, Mojzis J (2005) Chiral cruciferous phytoalexins: preparation, absolute configuration, and biological activity. Bioorg Med Chem 13:5206–5212. doi: 10.1016/j.bmc.2005.06.001 CrossRefPubMedGoogle Scholar
  31. 31.
    Monde K, Takasugi M, Shirata A (1995) Three sulphur-containing stress metabolites from Japanese radish. Phytochem 39:581–586. doi: 10.1016/0031-9422(95)00011-U CrossRefGoogle Scholar
  32. 32.
    Marti C, Erick M, Carreira EM (2003) Construction of spiro[pyrrolidine-3,3’-oxindoles] recent applications to the synthesis of oxindole alkaloids. Eur J Org Chem 2003:2209–2219. doi: 10.1002/ejoc.200300050 CrossRefGoogle Scholar
  33. 33.
    Li Sh-M (2010) Prenylated indole derivatives from fungi: structure diversity, biological activities, biosynthesis and chemoenzymatic synthesis. Nat Prod Rep 27:57–78. doi: 10.1039/b909987p CrossRefPubMedGoogle Scholar
  34. 34.
    Hart DJ (2010) The spiroquinazoline family of alkaloids: a review. ARKIVOC IV: 32-65.doi: 10.3998/ark.5550190.0011.405
  35. 35.
    Singh GS, Desta ZY (2012) Isatins as privileged molecules in design and synthesis of spiro-fused cyclic frameworks. Chem Rev 112:6104–6155. doi: 10.1021/cr300135y CrossRefPubMedGoogle Scholar
  36. 36.
    Cheng D, Ishihara Y, Tan B, Barbas CF III (2014) Organocatalytic asymmetric assembly reactions: synthesis of spirooxindoles via organocascade strategies. ACS Catal 4:743–762. doi: 10.1021/cs401172r CrossRefGoogle Scholar
  37. 37.
    Zhen Yajun, Colin MT, Singh Suresh B (2014) The use of spirocyclic scaffolds in drug discovery. Bioorg Med Chem Lett 24:3673–3682. doi: 10.1016/j.bmcl.2014.06.081 CrossRefGoogle Scholar
  38. 38.
    Wenkert E, Delhofen JHU, Bhaitacharyya NK (1959) 3-Hydroxymethyleneoxindole and its derivatives. J Am Chem Soc 81:3763–3768. doi: 10.1021/ja01523a068 CrossRefGoogle Scholar
  39. 39.
    Laus G (1998) Kinetics of isomerization of tetracyclic spiro oxindole alkaloids. J Chem Soc, Perkin Trans 2:315–317. doi: 10.1039/A705871C CrossRefGoogle Scholar
  40. 40.
    Miyake FY, Yakushijin K, Horne DA (2004) Preparation and synthetic applications of 2-halotryptamines: synthesis of elacomine and isoelacomine. Org Lett 6:711–713. doi: 10.1021/ol030138x CrossRefPubMedGoogle Scholar
  41. 41.
    Nussbaum F, Danishefsky SJ (2000) A rapid total synthesis of spirotryprostatin B: proof of its relative and absolute stereochemistry. Angew Chem Int Ed 29:2175–2178. doi: 10.1002/15213773(20000616)39:12<2175::AID-ANIE2175>3.0.CO;2-J
  42. 42.
    Finch N, Taylor WI (1962) Oxidative transformations of indole alkaloids. I. The preparation of oxindoles from yohimbine; the structures and partial syntheses of mitraphylline, rhyncophylline and corynoxeine. J Am Chem Soc 84:1318–1320. doi: 10.1021/ja00866a062 CrossRefGoogle Scholar
  43. 43.
    White JD, Li Y, Ihle DC (2010) Tandem intramolecular photocycloaddition-retro-mannich fragmentation as a route to spiro[pyrrolidine-3,3’-oxindoles]. total synthesis of \((\pm )\)-coerulescine, \((\pm )\)-horsfiline, \((\pm )\)-elacomine, and \((\pm )\)-6-deoxyelacomine. J Org Chem 75:3569–3577. doi: 10.1021/jo1002714 CrossRefPubMedGoogle Scholar
  44. 44.
    Wang H, Ganesan A (2000) A biomimetic total synthesis of (-)-spirotryprostatin B and related studies. J Org Chem 65:4685–4693. doi: 10.1021/jo000306o CrossRefPubMedGoogle Scholar
  45. 45.
    Peterson AC, Cook JM (1995) Studies directed toward the enantiospecific synthesis of Gardneria, Voacanga, and Alstonia oxindole alkaloids. J Org Chem 60:120–129. doi: 10.1021/jo00106a024 CrossRefGoogle Scholar
  46. 46.
    Yu P, Cook JM (1997) Diastereospecific synthesis of ketooxindoles. Potential intermediates for the synthesis of alstonisine as well as for Voachalotine related oxindole alkaloids. Tetrahedron Lett 38:8799–8802. doi: 10.1016/S0040-4039(97)10420-8 CrossRefGoogle Scholar
  47. 47.
    Somei M, Noguchi K, Yamagami R, Kawada Y, Yamada K, Yamada F (2000) Preparation and a novel rearrangement reaction of 1,2,3,4-tetrahydro-9-hydroxy-\({\beta }\)-carboline, and their applications for the total synthesis of \((\pm )\)-coerulescine. Heterocycl 53:7–10. doi: 10.3987/COM-99-8743 CrossRefGoogle Scholar
  48. 48.
    Dounay AB, Overman LE (2003) The asymmetric intramolecular heck reaction in natural product total synthesis. Chem Rev 103:2945–2963. doi: 10.1021/cr020039h CrossRefPubMedGoogle Scholar
  49. 49.
    Kamisaki H, Nanjo T, Tsukano C, Takemoto Y (2011) Domino Pd-catalyzed heck cyclization and bismuth-catalyzed hydroamination: formal synthesis of elacomine and isoelacomine. Chem Eur J 17:626–633. doi: 10.1002/chem.201002287 CrossRefPubMedGoogle Scholar
  50. 50.
    Kamisaki H, Yasui Y, Takemoto Y (2009) Pd-catalyzed intramolecular amidation of 2-(buta-1,3-dienyl)phenylcarbamoyl chloride: a concise synthesis of spiro[indoline-3,3\(^\prime \)-pyrrolidine]. Tetrahedron Lett 50:2589–2592. doi: 10.1016/j.tetlet.2009.03.100 CrossRefGoogle Scholar
  51. 51.
    Overman LE, Rosen MD (2000) Total synthesis of (-)-spirotryprostatin B and three stereoisomers. Angew Chem Int Ed 39:4596–4599. doi: 10.1002/15213773(20001215)39:24<4596::AID-ANIE4596>3.0.CO;2-F
  52. 52.
    Jaegli S, Dufou J, Wei H, Piou T, Duan X, Vors J, Neuville L, Zhu J (2010) Palladium-catalyzed carbo-heterofunctionalization of alkenes for the synthesis of oxindoles and spirooxindoles. Org Lett 12:4498–4501. doi: 10.1021/ol101778c CrossRefPubMedGoogle Scholar
  53. 53.
    Jaegli S, Erb W, Retailleau P, Vors J-P, Neuville L, Zhu J (2010) Palladium-catalyzed domino process to spirooxindoles: ligand effect on aminopalladation versus carbopalladation. Chem Eur J 16:5863–5867. doi: 10.1002/chem.201000312 CrossRefPubMedGoogle Scholar
  54. 54.
    Jaegli S, Vors JP, Neuville L, Zhu J (2010) Palladium-catalyzed domino Heck/cyanation: synthesis of 3-cyanomethyloxindoles and their conversion to spirooxoindoles. Tetrahedron 66:8911–8921. doi: 10.1016/j.tet.2010.09.056 CrossRefGoogle Scholar
  55. 55.
    Deppermann N, Thomanek H, Prenzel A, Maison W (2010) Pd-catalyzed assembly of spirooxindole natural products: a short synthesis of horsfiline. J Org Chem 75:5994–6000. doi: 10.1021/jo101401z CrossRefPubMedGoogle Scholar
  56. 56.
    Cravotto G, Giovenzana GB, Pilati T, Sisti M, Palmisano G (2001) Azomethine ylide cycloaddition/reductive heterocyclization approach to oxindole alkaloids: asymmetric synthesis of (-)-horsfiline. J Org Chem 66:8447–8453. doi: 10.1021/jo015854w CrossRefPubMedGoogle Scholar
  57. 57.
    Grigg R, Basanagoudar LD, Kennedy DA, Malone JF, Thianpatanagul S (1982) X=Y-ZH systems as potential 1,3-dipoles. Cycloadditions of thiominoethers and thioiminocarbonates. Tetrahedron Lett 23:2803–2806. doi: 10.1016/S0040-4039(00)87463-8 CrossRefGoogle Scholar
  58. 58.
    Fejes I, Nyerges M, Nyerges M, Szöllõsy Á, Blaskó G, Tõke L (2001) 2-Oxoindolin-3-ylidene derivatives as 2-\(\pi \) components in 1,3-dipolar cycloadditions of azomethine ylides. Tetrahedron 57:1129–1137. doi: 10.1016/S0040-4020(00)01085-1 CrossRefGoogle Scholar
  59. 59.
    Sebahar PR, Osada H, Usuib T, Williams RM (2002) Asymmetric, stereocontrolled total synthesis of (+) and (-)-spirotryprostatin B via a diastereoselective azomethine ylide [1,3]-dipolar cycloaddition reaction. Tetrahedron 58:6311–6322. doi: 10.1016/S0040-4020(02)00630-0 CrossRefGoogle Scholar
  60. 60.
    Bell SEV, Brown RFC, FrW Eastwood, Horvath JM (2000) An approach to some spiro oxindole alkaloids through cycloaddition reactions of 3-methylideneindolin-2-one. Aust J Chem 53:183–190. doi: 10.1002/chin.200043209 CrossRefGoogle Scholar
  61. 61.
    Onishi T, Sebahar PR, Williams RM (2004) Concise, asymmetric total synthesis of spirotryprostatin A. Tetrahedron 60:9503–9515. doi: 10.1016/j.tet.2004.07.047 CrossRefGoogle Scholar
  62. 62.
    Fejes I, To’ke L, Nyerges M, Pak ChS (2000) Tandem in situ generation of azomethine ylides and base sensitive nitroethylene dipolarophiles. Tetrahedron 56:639–644. doi: 10.1016/S0040-4020(99)01028-5 CrossRefGoogle Scholar
  63. 63.
    Serov AB, Kartsev VG, Aleksandrov YuA, Dolgushin FM (2005) 1,3-Dipolar cycloaddition reaction of heteroaromatic N-ylides with 3-[(E)-2-aryl(hetaryl)-2-oxoethylidene]indolin-2-ones. Russ Chem Bull 54:2432–2436. doi: 10.1007/s11172-006-0133-2 CrossRefGoogle Scholar
  64. 64.
    Lo M, Neumann CS, Nagayama S, Perlstein EO, Schreiber SL (2004) A library of spirooxindoles based on a stereoselective three-component coupling reaction. J Am Chem Soc 126:16077–16086. doi: 10.1021/ja045089d CrossRefPubMedGoogle Scholar
  65. 65.
    Ding K, Lu Y, Nikolovska-Coleska Z, Wang G, Qiu S, Shangary S, Gao W, Qin D, Stuckey J, Krajewski K, Roller PP, Wang S (2006) Structure-based design of spiro-oxindoles as potent, specific small- molecule inhibitors of the MDM2-p53 interaction. J Med Chem 49:3432–3435. doi: 10.1021/jm051122a CrossRefPubMedGoogle Scholar
  66. 66.
    Ding K, Lu Y, Nikolovska-Coleska Z, Qiu S, Ding Y, Gao W, Stuckey J, Krajewski K, Roller P, Tomita Y, Parrish D, Deschamps J,Wang S (2005) Structure-based design of potent non-peptide MDM2 inhibitors. J Am Chem Soc 127:10130–10131. doi: 10.1021/ja051147z
  67. 67.
    Ding K, Wang G, Deschamps JR, Parrish DA, Wang Sh (2005) Synthesis of spirooxindoles via asymmetric 1,3-dipolar cycloaddition. Tetrahedron Lett 46:5949–5951. doi: 10.1016/j.tetlet.2005.06.114 CrossRefGoogle Scholar
  68. 68.
    Chen Xiao-Hua, Wei Qiang, Luo Shi-Wei, Xiao Han, Gong Liu-Zhu (2009) Organocatalytic synthesis of spiro[pyrrolidin-3,3\(^{\prime }\)-oxindoles] with high enantiopurity and structural diversity. J Am Chem Soc 131:13819–13825. doi: 10.1021/ja905302f CrossRefPubMedGoogle Scholar
  69. 69.
    Lashgari N, Ziarani GM (2012) Synthesis of heterocyclic compounds based on isatin through 1,3-dipolar cycloaddition reactions. ARKIVOC I :277–320. doi: 10.3998/ark.5550190.0013.108 Google Scholar
  70. 70.
    Rizzi GP (1970) Evidence for an azomethine ylide intermediate in the carbonyl-assisted decarboxylation dl-phenylephrine hydrochloride of sarcosine. A novel synthesis of dl-phenylephrine hydrochloride. J Org Chem 35:2069–2072. doi: 10.1021/jo00831a098 CrossRefGoogle Scholar
  71. 71.
    Da Silva JFM, Garden SJ, Pinto AC (2001) The chemistry of isatins: a review from 1975 to 1999. J Braz Chem Soc 12:273–324. doi: 10.1590/S0103-50532001000300002 CrossRefGoogle Scholar
  72. 72.
    Coulter T, Grigg R, Maloneb JF, Sridharan V (1991) Chiral induction in cycloaddition reactions of azomethine ylides derived from secondary \({\alpha }\)-amino acids by the decarboxylative route. Tetrahedron Lett 32:5417–5420. doi: 10.1016/S0040-4039(00)92401-8 CrossRefGoogle Scholar
  73. 73.
    Grigg R (1987) Prototropic routes to 1,3- and 1,5-dipoles, and 1,2-ylides: applications to the synthesis of heterocyclic compounds. Chem Soc Rev 16:89–121. doi: 10.1039/CS9871600089 CrossRefGoogle Scholar
  74. 74.
    Fokas D, Ryan WJ, Casebier DS, Coffen DL (1998) Solution phase synthesis of a spiro[pyrrolidine-2,3\(^{\prime }\)-oxindole] library via a three component 1,3-dipolar cycloaddition reaction. Tetrahedron Lett 39:2235–2238. doi: 10.1016/S0040-4039(98)00234-2 CrossRefGoogle Scholar
  75. 75.
    Powers DG, Casebier DS, Fokas D, Ryan WJ, Troth JR, Coffen DL (1998) Automated parallel synthesis of chalcone-based screening libraries. Tetrahedron 54:4085–4096. doi: 10.1016/S0040-4020(98)00137-9 CrossRefGoogle Scholar
  76. 76.
    Pardasani RT, Pardasani P, Chaturvedi V, Yadav SK, Saxena A, Sharma I (2003) Theoretical and synthetic approach to novel spiroheterocycles derived from isatin derivatives and L-proline via 1,3-dipolar cycloaddition. Heteroatom Chem 14:36–41. doi: 10.1002/hc.10063 CrossRefGoogle Scholar
  77. 77.
    Sarrafi Y, Hamzehloueian M, Alimohammadi K, Yeganegi S (2011) An experimental and theoretical investigation of the regio- and stereoselectivity of the polar [3+2] cycloaddition of azomethine ylides to nitrostyrene. Tetrahedron 67:1589–1597. doi: 10.1016/j.tet.2010.12.034 CrossRefGoogle Scholar
  78. 78.
    Chen G, Miao Y, Zhou R, Zhang L, Zhang Y, Hao X (2013) Investigation of regioselectivity in the synthesis of spiro[pyrrolidine-2,30-oxindoles] by use of the Huisgen reaction. Res Chem Intermed 39:2445–2450. doi: 10.1007/s11164-012-0770-z CrossRefGoogle Scholar
  79. 79.
    Sarrafi Y, Hamzehloueian M, Alimohammadi K, Yeganegi S (2012) Experimental and theoretical approaches to [1,5]-prototropic generation of an azomethine ylide and a 1,3-dipolar cycloaddition for novel spiropyrrolidine oxindoles synthesis. J Mol Struct 1030:168–176. doi: 10.1016/j.molstruc.2012.04.013 CrossRefGoogle Scholar
  80. 80.
    Rehn S, Bergman J, Stainsland B (2004) The three-component reaction between isatin, \({\alpha }\)-amino acids, and dipolarophiles. Eur J Org Chem 2:413–418. doi: 10.1002/ejoc.200300621 CrossRefGoogle Scholar
  81. 81.
    Chen G, He H, Ding J, Hao X (2009) Synthesis and antitumor activity evaluation of regioselective spiro[pyrrolidine-2,3’-oxindole] compounds. Heterocycl Commun 15:355–360. doi: 10.1515/HC.2009.15.5.355 CrossRefGoogle Scholar
  82. 82.
    Hemamalini A, Nagarajan S, Ravinder P, Subramanian V, Thangamuthu B, Das M (2011) An easy access to novel sugar-based spirooxindole-pyrrolidines or -pyrrolizidines through [3+2] cycloaddition of azomethine ylides. Synth 15:2495–2504. doi: 10.1055/s-0030-1260111 Google Scholar
  83. 83.
    Hemamalini A, Nagarajan S, Das ThM (2012) A novel class of sugar-based ether-linked-dispirooxindolo-pyrrolidines/pyrrolizidines through [3+2]-cycloaddition of azomethine ylides. Carbohydr Res 352:12–17. doi: 10.1016/j.carres.2012.01.023 CrossRefPubMedGoogle Scholar
  84. 84.
    Wu G, Ouyang L, Liu J, Zeng S, Huang W, Han B, Wu F, He G, Xiang M (2013) Synthesis of novel spirooxindolo-pyrrolidines, pyrrolizidines, and pyrrolothiazoles via a regioselective three-component [3+2] cycloaddition and their preliminary antimicrobial evaluation. Mol Divers 17:271–283. doi: 10.1007/s11030-013-9432-3 CrossRefPubMedGoogle Scholar
  85. 85.
    Kanagaraju G, Thangamani A (2014) Design and synthesis of spiro derivatives containing a thiophene ring and evaluation of their anti-microbial activity. Orient J Chem 30:1619–1630. doi: 10.13005/ojc/300421 CrossRefGoogle Scholar
  86. 86.
    Azizian J, Asadi A, Jadidi Kh (2001) One-pot highly diastereo-selective synthesis of new 2-substituted 8-(sprio-3\(^\prime \)-indolino-2\(^\prime \)-one)-pyrrolo[3,4-a]-pyrrolizine-1,3-diones mediated by azomethine ylide induced by microwave irradiation. Synth Commun 31:2727–2733. doi: 10.1081/SCC-100105318 CrossRefGoogle Scholar
  87. 87.
    Girgis AS, Stawinski J, Ismail NSM, Fara H (2012) Synthesis and QSAR study of novel cytotoxic spiro[3H-indole-3,2’(1\(^{\prime }\)H)-pyrrolo[3,4-c]pyrrole]-2,3\(^{\prime }\),5\(^{\prime }\)(1H,2\(^{\prime }\)H,4\(^{\prime }\)H)-triones. Eur J Med Chem 47:312–322. doi: 10.1016/j.ejmech.2011.10.058 CrossRefPubMedGoogle Scholar
  88. 88.
    Pavlovskaya TL, Red’kin RG, Yaremenko FG, Shishkina SV, Shishkin OV, Musatov VI, Lipson VV (2013) Synthesis and chemical properties of new derivatives of 3a\(^\prime \),6a\(^\prime \)-dihydro-2\(^\prime \)H-spiro- [indole-3,1\(^\prime \)-pyrrolo[3,4-c]pyrrole]- 2,4\(^\prime \),6\(^\prime \)(1H,3\(^\prime \)H,5\(^\prime \)H)-trione. Chem Heterocycl Comp 49: 882–896 (Russian Original 49: 945–960). doi: 10.1007/s10593-013-1322-1
  89. 89.
    Karthikeyan K, Sivakumar PM, Doble M, Perumal PT (2010) Synthesis, antibacterial activity evaluation and QSAR studies of novel dispiropyrrolidines. Eur J Med Chem 45:3446–3452. doi: 10.1016/j.ejmech.2010.04.035 CrossRefPubMedGoogle Scholar
  90. 90.
    Faraji L, Arvinnezhad H, Alikami N, Jadidi K (2010) Synthesis of pyrrolizidine derivatives in ionic liquid [bmim]Br. Lett Org Chem 7:472–415. doi: 10.2174/157017810791824946 CrossRefGoogle Scholar
  91. 91.
    Pavlovskaya TL, Lipson VV, Yaremenko FG, Musatov VI (2013) Acryl- and methacrylamides. New dipolarophiles in reactions of [2+3]-dipolar cycloaddition to 2-oxindolazomethine ylides. Russ J Org Chem 49(11):1712–1714 (Russian Original 49:1728–1730). doi: 10.1134/S1070428013110274
  92. 92.
    Pavlovskaya TL, Yaremenko FG, Lipson VV, Shishkina SV, Shishkin OV, Musatov VI, Karpenko AS (2014) The regioselective synthesis of spirooxindolo pyrrolidines and pyrrolizidines via three-component reactions of acrylamides and aroylacrylic acids with isatins and \({\alpha }\)-amino acids. Beilstein J Org Chem 10:117–126. doi: 10.3762/bjoc.10.8 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Xie Yong-Mei, Yao Yu-Qin, Sun Hong-Bao, Yan Ting-Ting, Liu Jie, Kang Tai-Ran (2011) Facile Synthesis of Functionalized Spiropyrrolizidine Oxindoles via a Three-Component Tandem Cycloaddition Reaction. Molecules 16:8745–8757. doi: 10.3390/molecules16108745 CrossRefGoogle Scholar
  94. 94.
    Murugan R, Raghunathan R, Narayanan SS (2010) Synthesis of novel spiroheterocycles through 1,3-dipolar cycloaddition of azomethine ylides with triarylideneacetylacetone through decarboxylation. Synth Commun 40:3135–3151. doi: 10.1080/00397910903341189 CrossRefGoogle Scholar
  95. 95.
    Ghandi M, Taheri A, Abbasi A (2010) A facile synthesis of chromeno[3,4-c]spiropyrrolidine-oxindoles via 1,3-dipolar cycloadditions. Tetrahedron 66:6744–6748. doi: 10.1016/j.tet.2010.06.078 CrossRefGoogle Scholar
  96. 96.
    Liu H, Dou G, Shi D (2010) Regioselective synthesis of novel spiropyrrolidines and spirothiapyrrolizidines through multicomponent 1,3-dipolar cycloaddition reaction of azomethine ylides. J Comb Chem 12:633–637. doi: 10.1021/cc100035q CrossRefPubMedGoogle Scholar
  97. 97.
    Rao JNS, Raghunathan R (2012) An expedient diastereoselective synthesis of pyrrolidinyl spirooxindoles fused to sugar lactone via [3+2] cycloaddition of azomethine ylides. Tetrahedron Lett 53:854–858. doi: 10.1016/j.tetlet.2011.12.025 CrossRefGoogle Scholar
  98. 98.
    Shanmugam P, Viswambharan B, Madhavan S (2007) Synthesis of novel functionalized 3-spiropyrrolizidine and 3-spiropyrrolidine oxindoles from baylis-hillman adducts of isatin and heteroaldehydes with azomethine ylides via [3+2]-cycloaddition. Org Lett 9:4095–4098. doi: 10.1021/ol701533d CrossRefPubMedGoogle Scholar
  99. 99.
    Chen H, Wang S, Xu X, Ji SJ (2011) Facile three-component synthesis of spirooxindolepyrrololine ring systems via 1,3-dipolar cycloaddition with 1,4-naphthoquinone. Synth Commun 41:3280–3288. doi: 10.1080/00397911.2010.517413 CrossRefGoogle Scholar
  100. 100.
    Bhaskar G, Arun Y, Balachandran C, Paramasivan CS, Perumal T (2012) Synthesis of novel spirooxindole derivatives by one pot multicomponent reaction and their antimicrobial activity. Eur J Med Chem 51:79–91. doi: 10.1016/j.ejmech.2012.02.024 CrossRefPubMedGoogle Scholar
  101. 101.
    Taghizadeh MJ, Arvinnezhad H, Samadi S, Jadidi K, Javidan A, Notash B (2012) Synthesis of new enantiomerically pure spirooxindolopyrrolizidines via a three-component asymmetric 1,3-dipolar cycloaddition reaction of azomethine ylides derived from isatin. Tetrahedron Lett 53:5148–5150. doi: 10.1016/j.tetlet.2012.07.066 CrossRefGoogle Scholar
  102. 102.
    Lakshmi NV, Thirumurugan P, Jayakumar C, Paramasivan T (2010) An easy access to novel spiro-fused pyrrolo benzo[b]thiophene 1,1-dioxide derivatives via 1,3-dipolar cycloaddition using benzo[b]thiophene 1,1-dioxide. Synlett 6:955–961. doi: 10.1055/s-0029-1219550 Google Scholar
  103. 103.
    Lakshmi NV, Thirumurugan P, Perumal PT (2010) An expedient approach for the synthesis of dispiropyrrolidine bisoxindoles, spiropyrrolidine oxindoles and spiroindane-1,3-diones through 1,3-dipolar cycloaddition reactions. Tetrahedron Lett 51:1064–1068. doi: 10.1016/j.tetlet.2009.12.079 CrossRefGoogle Scholar
  104. 104.
    Jain AK, Bhati DS (2011) Direct construction of novel dispiro heterocycles through 1,3-dipolar cycloaddition of azomethine ylides. Tetrahedron Lett 52:5333–5337. doi: 10.1016/j.tetlet.2011.08.014 CrossRefGoogle Scholar
  105. 105.
    Jayashankaran J, Manian DRS, Raghunathan R (2004) A facile synthesis of novel dispiroheterocycles through solvent-free microwave-assisted [3+2] cycloaddition of azomethine ylides. Tetrahedron Lett 45:7303–7305. doi: 10.1016/j.tetlet.2004.08.015 CrossRefGoogle Scholar
  106. 106.
    Babu S, Raghunathan R (2007) Ultrasonic assisted-silica mediated [3+2] cycloaddition of azomethine ylides - a facile multicomponent one-pot synthesis of novel dispiroheterocycles. Tetrahedron Lett 48:6809–6813. doi: 10.1016/j.tetlet.2007.07.085 CrossRefGoogle Scholar
  107. 107.
    Jain R, Sharma K, Kumar D (2012) Ionic liquid mediated 1,3-dipolar cycloaddition of azomethine ylides: a facile and green synthesis of novel dispiro heterocycles. Tetrahedron Lett 53:1993–1997. doi: 10.1016/j.tetlet.2012.02.029 CrossRefGoogle Scholar
  108. 108.
    Maheswari SU, Balamurugan K, Perumal S, Yogeeswari P, Sriram D (2010) A facile 1,3-dipolar cycloaddition of azomethine ylides to 2-arylidene-1,3-indanediones: synthesis of dispiro-oxindolylpyrrolothiazoles and their antimycobacterial evaluation. Bioorg Med Chem Lett 20:7278–7282. doi: 10.1016/j.bmcl.2010.10.080 CrossRefPubMedGoogle Scholar
  109. 109.
    El-Ahl Abdel-Aziz S (2002) Three-component 1,3-dipolar cycloaddition reactions in synthesis of spiro[pyrrolidine-2,30-oxindoline] derivatives. Heteroat Chem 13:324–329. doi: 10.1002/hc.10038 CrossRefGoogle Scholar
  110. 110.
    Raj AA, Raghunathan R (2001) A novel entry into a new class of spiroheterocyclic framework: regioselective synthesis of dispiro[oxindole-cyclohexanone]pyrrolidines and dispiro[oxindole-hexahydroindazole]pyrrolidines. Tetrahedron 57:10293–10298. doi: 10.1016/S0040-4020(01)01042-0 CrossRefGoogle Scholar
  111. 111.
    Girgis AS (2009) Regioselective synthesis and stereochemical structure of anti-tumor active dispiro[3H-indole-3,2\(^{\prime }\)-pyrrolidine-3\(^{\prime },3^{\prime \prime }\)-piperidine]-2(1H), 4\(^{\prime \prime }\)-diones. Eur J Med Chem 44:1257–1264. doi: 10.1016/j.ejmech.2008.09.007 CrossRefPubMedGoogle Scholar
  112. 112.
    Hazra A, Paira P, Sahu KB, Naskar S, Saha P, Paira R, Mondal S, Maity A, Luger P, Weber M, Mondal NB, Banerjee S (2010) Chemistry of andrographolide: formation of novel di-spiropyrrolidino and di-spiropyrrolizidino-oxindole adducts via one-pot three-component [3+2] azomethine ylide cycloaddition. Tetrahedron Lett 51:1585–1588. doi: 10.1016/j.tetlet.2010.01.052 CrossRefGoogle Scholar
  113. 113.
    Babu SR, Raghunathan R (2008) An easy access to novel steroidal dispiropyrrolidines through 1,3-dipolar cycloaddition of azomethine ylides. Tetrahedron Lett 49:4618–4620. doi: 10.1016/j.tetlet.2008.05.089 CrossRefGoogle Scholar
  114. 114.
    Bharitkar YP, Kanhar S, Suneel N, Mondal SK, Hazra A, Mondal NB (2015) Chemistry of withaferin-A: chemo, regio, and stereoselective synthesis of novel spiro-pyrrolizidino-oxindole adducts of withaferin-A via one-pot three-component [3+2] azomethine ylide cycloaddition and their cytotoxicity evaluation. Mol Divers 19:251–261. doi: 10.1007/s11030-015-9574-6 CrossRefPubMedGoogle Scholar
  115. 115.
    Poornachandran M, Raghunathan R (2006) Synthesis of dispirooxindolecycloalka[d]pyrimidino[2,3-b]-thiazole pyrrolidine/thiapyrrolizidine ring systems. Tetrahedron 62:11274–11281. doi: 10.1016/j.tet.2006.09.008 CrossRefGoogle Scholar
  116. 116.
    Murugan R, Anbazhagan S, Narayanan SS (2009) Synthesis and in vivo antidiabetic activity of novel dispiropyrrolidines through [3+2] cycloaddition reactions with thiazolidinedione and rhodanine derivatives. Eur J Med Chem 44:3272–3279. doi: 10.1016/j.ejmech.2009.03.035 CrossRefPubMedGoogle Scholar
  117. 117.
    Liu H, Zou Y, Hu Y, Shi DQ (2011) An efficient one-pot synthesis of dispiropyrrolidine derivatives through 1,3-dipolar cycloaddition reactions under ultrasound irradiation. J Heterocycl Chem 48:877–881. doi: 10.1002/jhet.654 CrossRefGoogle Scholar
  118. 118.
    Hu Y, Zou Y, Wu H, Shi D (2012) A facile and efficient ultrasound-assisted synthesis of novel dispiroheterocycles through 1,3-dipolar cycloaddition reactions. Ultrason Sonochem 19:264–269. doi: 10.1016/j.ultsonch.2011.07.006 CrossRefPubMedGoogle Scholar
  119. 119.
    Mamari KA, Ennajih H, Zouihri H, Bouhfid R, Ng SW, Essassi EM (2012) Synthesis of novel dispiro-oxindoles via 1,3-dipolar cycloaddition reactions of azomethine ylides. Tetrahedron Lett 53:2328–2331. doi: 10.1016/j.tetlet.2012.02.097 CrossRefGoogle Scholar
  120. 120.
    Dalpozzo R, Bartoli G, Bencivenni G (2012) Recent advances in organocatalytic methods for the synthesis of disubstituted 2- and 3-indolinones. Chem Soc Rev 41:7247–7290. doi: 10.1039/C2CS35100E CrossRefPubMedGoogle Scholar
  121. 121.
    Tan B, Zeng X, Leong WWY, Shi Barbas III CF, Zhong G (2012) Core structure-based design of organocatalytic [3+2]-cycloaddition reactions: highly efficient and stereocontrolled syntheses of 3,3\(^{\prime }\)-pyrrolidonyl spirooxindoles. Chem Eur J 18:63–67. doi: 10.1002/chem.201103449 CrossRefPubMedGoogle Scholar
  122. 122.
    Cao Y, Jiang X, Liu L, Shen FF, Zhang F, Wang R (2011) Enantioselective michael/cyclization reaction sequence: scaffold-inspired synthesis of spirooxindoles with multiple stereocenters. Angew Chem 123:9290–9293. doi: 10.1002/ange.201104216 CrossRefGoogle Scholar
  123. 123.
    Hande SM, Nakajima M, Kamisaki H, Tsukano C, Takemoto Y (2011) Flexible strategy for syntheses of spirooxindoles using palladium- catalyzed carbosilylation and sakurai-type cyclization. Org Lett 13:1828–1831. doi: 10.1021/ol2003447 CrossRefPubMedGoogle Scholar
  124. 124.
    Alcaide B, Almendros P, Rodriguez-Acebes R (2006) Efficient entry to diversely functionalized spirocyclic oxindoles from isatins through carbonyl-addition/cyclization reaction sequences. J Org Chem 71:2346–2351. doi: 10.1021/jo0525027 CrossRefPubMedGoogle Scholar
  125. 125.
    Du D, Hu Z, Jin J, Lu Y, Tang W, Wang B, Lu T (2012) N-Heterocyclic carbene-catalyzed three-component domino reaction of alkynyl aldehydes with oxindoles. Org Lett 14:1274–1277. doi: 10.1021/ol300148f CrossRefPubMedGoogle Scholar
  126. 126.
    Castaldi MP, Troast DM, Porco JA (2009) Stereoselective synthesis of spirocyclic oxindoles via Prins cyclizations. J Org Lett 11:3362–3365. doi: 10.1021/ol901201k CrossRefGoogle Scholar
  127. 127.
    Zhang Y, Panek JS (2009) Stereocontrolled Synthesis of spirooxindoles through lewis acid-promoted [5+2]-annulation of chiral silyl alcohols. Org Lett 11:3366–3369. doi: 10.1021/ol901202t CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Wang J, Crane EA, Scheidt KA (2011) Highly stereoselective Brønsted acid catalyzed synthesis of spirooxindole pyrans. Org Lett 13:3086–3089. doi: 10.1021/ol200987c CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Zh L, Shi M (2012) Nitrogen- and phosphorus-containing Lewis base catalyzed [4+2] and [3+2] annulation reactions of isatins with but-3-yn-2-one. Eur J Org Chem 3:581–586. doi: 10.1002/ejoc.201101338 Google Scholar
  130. 130.
    Zhu SL, Ji SJ, Zhang Y (2007) A simple and clean procedure for three-component synthesis of spirooxindoles in aqueous medium. Tetrahedron 63:9365–9372. doi: 10.1016/j.tet.2007.06.113 CrossRefGoogle Scholar
  131. 131.
    Chen WB, Wu ZJ, Pei QL, Cun LF, Zhang XM, Yuan WC (2010) Highly enantioselective construction of spiro[4h-pyran-3,3’-oxindoles] through a domino Knoevenagel/Michael/cyclization sequence catalyzed by cupreine. Org Lett 12:3132–3135. doi: 10.1021/ol1009224 CrossRefPubMedGoogle Scholar
  132. 132.
    Shishkina SV, Shishkin OV, Redkin RG, Shemchuk LA, Chernykh VP (2007) Crystal structure of 3,4-spiro-[(5-acetyl-2-amino-3-carbethoxy-6-methyl-4H-pyrano)-1H,3H-indol-2-on]. Acta Cryst 63:3193–3196. doi: 10.1107/S1600536807027547 Google Scholar
  133. 133.
    Shemchuk LA, Chernykh VP, Redkin RG (2008) Synthesis of fused 2\(^{\prime }\)-amino-3\(^{\prime }\)-R-spiro-[indole-3,4\(^{\prime }\)-pyran]-2(1H)-ones. Russ J Org Chem 44:1789–1791. doi: 10.1134/S1070428008120117 CrossRefGoogle Scholar
  134. 134.
    Litvinov YM, Mortikov VY, Shestopalov AM (2008) Versatile three-component procedure for combinatorial synthesis of 2-aminospiro[(3\(^{\prime }\)h)-indol-3\(^{\prime }\),4-(4h)-pyrans]. J Comb Chem 10:741–745. doi: 10.1021/cc800093q CrossRefPubMedGoogle Scholar
  135. 135.
    Redkin RG, Shemchuk LA, Chernykh VP, Shishkin OV, Shishkina SV (2007) Synthesis and molecular structure of spirocyclic 2-oxindole derivatives of 2-amino-4H-pyran condensed with the pyrazolic nucleus. Tetrahedron 63:11444. doi: 10.1016/j.tet.2007.08.050 CrossRefGoogle Scholar
  136. 136.
    Heravi MH, Zakeri M, Moharami A (2012) Versatile three-component procedure for combinatorial synthesis of spiro-oxindoles with fused chromenes catalysed by L-proline. J Chem Sci 124:865–869. doi: 10.1007/s12039-012-0284-7 CrossRefGoogle Scholar
  137. 137.
    Wang L-M, Jiao N, Qiu J, Yu J-J, Liu J-Q, Guo F-L, Liu Y (2010) Sodium stearate-catalyzed multicomponent reactions for efficient synthesis of spirooxindoles in aqueous micellar media. Tetrahedron 66:339–343. doi: 10.1016/j.tet.2009.10.091 CrossRefGoogle Scholar
  138. 138.
    Rad-Moghadam K, Youseftabar-Miri L (2011) Ambient synthesis of spiro[4H-pyran-oxindole] derivatives under [BMIm]BF\(_{4}\) catalysis. Tetrahedron 67:5693–5699. doi: 10.1016/j.tet.2011.05.077 CrossRefGoogle Scholar
  139. 139.
    Mobinikhaledi A, Foroughifar N, Fard MAB (2011) Simple and efficient method for three-component synthesis of spirooxindoles in aqueous and solvent-free media. Synth Commun: Int J Rap Commun Synth Org Chem 41:441–450. doi: 10.1080/00397911003587507 CrossRefGoogle Scholar
  140. 140.
    Zhao L-Q, Zhou B, Li Y-Q (2011) An efficient one-pot three-component reaction for synthesis of spirooxindole derivatives in water media under catalyst-free condition. Heteroat Chem 22:673–677. doi: 10.1002/hc.20723 CrossRefGoogle Scholar
  141. 141.
    Elinson MN, Ilovaisky AI, Merkulova VM, Zaimovskaya TA, Nikishin GI (2012) Non-catalytic thermal multicomponent assembling of isatin, cyclic CH-acids and malononitrile: an efficient approach to spirooxindole scaffold. Mendeleev Commun 22:143–144. doi: 10.1016/j.mencom.2012.05.010 CrossRefGoogle Scholar
  142. 142.
    Hasaninejada A, Golzar N, Beyrati M, Zare A, Doroodmand MM (2013) Silica-bonded 5-n-propyl-octahydro-pyrimido[1,2-a]azepinium chloride (SB-DBU)Cl as a highly efficient, heterogeneous and recyclable silica-supported ionic liquid catalyst for the synthesis of benzo[b]pyran, bis(benzo[b]pyran) and spiro-pyran derivatives. J Mol Catal A: Chem 372:137–150. doi: 10.1016/j.molcata.2013.02.022 CrossRefGoogle Scholar
  143. 143.
    Liu Y, Ren Z, Cao W, Chen J, Deng H, Shao M (2011) Solvent-free one-pot synthesis of spiro[indoline-3,4\(^{\prime }(1\text{ H }^{\prime })\)-pyrano[2,3-c]pyrazol]-2-one derivatives by grinding. Synth Commun 41:3620–3626. doi: 10.1080/00397911.2010.519449 CrossRefGoogle Scholar
  144. 144.
    Zou Y, Hu Y, Liu H, Shi D (2012) Rapid and efficient ultrasound-assisted method for the combinatorial synthesis of spiro[indoline-3,4\(^{\prime }\)-pyrano[2,3-c]pyrazole] derivatives. ACS Comb Sci 14:38–43. doi: 10.1021/co200128k CrossRefPubMedGoogle Scholar
  145. 145.
    Ukrainets IV, Redkin RG, Sidorenko LV, Turov AV (2009) 4-Hydroxy-2-quinolones 172. Synthesis and structure of 4,3\(^\prime \)-spiro[(6-allyl-2-amino-5-oxo-5,6-dihydro-4h-pyrano-[3,2-c]quinoline-3-carbo-nitrile)-2\(^\prime \)-oxindole]. Chem Heterocycl Comp 45:1478–1484. doi: 10.1007/s10593-010-0454-9 CrossRefGoogle Scholar
  146. 146.
    Ghahremanzadeh R, Amanpour T, Bazgir A (2009) An efficient, three-component synthesis of spiro[benzo[g]chromene-4,3\(^{\prime }\)-indoline]-3-carbonitrile and spiro[indoline-3,5\(^{\prime }\)-pyrano[2,3-d]pyrimidine]-6\(^{\prime }\)-carbonitrile derivatives. J Heterocycl Chem 46:1266–1270. doi: 10.1002/jhet.240 CrossRefGoogle Scholar
  147. 147.
    Zhao H, Lan Y-B, Liu Z-M, Wang Y, Wang X-W, Tao J-C (2012) Enantioselective construction of spiro[2H-pyran-3,4’-indoline] by a systematic Michael/Reduction/Cyclization sequence triggered by the asymmetric conjugate addition of ketones to isatylidenemalononitriles. Eur J Org Chem 10:1935–1944. doi: 10.1002/ejoc.201101810 CrossRefGoogle Scholar
  148. 148.
    Liang B, Kalidindi S, Porco JA, Stephenson CRJ (2010) Multicomponent reaction discovery: three-component synthesis of spirooxindoles. Org Lett 12:572–575. doi: 10.1021/ol902764k CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Ghahremanzadeh R, Fereshtehnejad F, Yasaei Z, Amanpour T, Bazgir A (2010) One-pot and three-component synthesis of spiro[chromeno[2,3-d]pyrimidine-5,30-indoline]-diones and spiro[chromeno[2,3-c]pyrazole-4,30-indoline]-diones. J Heterocycl Chem 47:967–972. doi: 10.1002/jhet.399 CrossRefGoogle Scholar
  150. 150.
    Jadidi K, Ghahremanzadeh R, Bazgir A (2009) Efficient synthesis of spiro[chromeno[2,3-d]pyrimidine-5,3\(^{\prime }\)-indoline]-tetraones by a one-pot and three-component reaction. J Comb Chem 11:341–344. doi: 10.1021/cc800167h CrossRefPubMedGoogle Scholar
  151. 151.
    Deng J, Mo L-P, Zhao F-Y, Zhang Z-H, Liu S-X (2012) One-pot, three-component synthesis of a library of spirooxindole-pyrimidines catalyzed by magnetic nanoparticle supported dodecyl benzenesulfonic acid in aqueous media. ACS Comb Sci 14:335–341. doi: 10.1021/co3000264 CrossRefPubMedGoogle Scholar
  152. 152.
    Moghaddam MM, Bazgir A, Mehdi AM, Ghahremanzadeh R (2012) Alum (KAl\(({\rm SO}_{4})_{2}\cdot 12{\rm H}_{2}{\rm O}\)) catalyzed multicomponent transformation: simple, efficient, and green route to synthesis of functionalized spiro[chromeno[2,3-d]pyrimidine-5,3\(^{\prime }\)-indoline]-tetraones in ionic liquid media. Chinese J Chem 30:709–714. doi: 10.1002/cjoc.201280014 CrossRefGoogle Scholar
  153. 153.
    Ghahremanzadeh R, Amanpour T, Sayyafi M, Bazgir A (2010) One-pot, three-component synthesis of spironaphthopyrano[2,3-d]pyrimidine-5,3\(^{\prime }\)-indolines in water. J Heterocycl Chem 47:421–424. doi: 10.1002/jhet.331 Google Scholar
  154. 154.
    Tisseh ZN, Ahmadi F, Dabiri M, Khavasi HR, Bazgir A (2012) A novel organocatalytic multi-component reaction: an efficient synthesis of polysubstituted pyrano-fused spirooxin. Tetrahedron Lett 53:3603–3606. doi: 10.1016/j.tetlet.2012.05.019 CrossRefGoogle Scholar
  155. 155.
    Bondensgaard K, Ankersen M, Thogersen H, Hansen BS, Wulff BS et al (2004) Recognition of privileged structures by g-protein coupled receptors. J Med Chem 47:888–899. doi: 10.1021/jm0309452 CrossRefPubMedGoogle Scholar
  156. 156.
    Patchett AA, Nargund RP, Tata JR, Chen MH, Barakat KJ, Johnston DB, Cheng K, Chan WW, Butler B, Hickey G (1995) Design and biological activities of L-163,191 (MK-0677): a potent, orally active growth hormone secretagogue. PNAS 92:7001–7005. doi: 10.1073/pnas.92.15.7001 CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Hickey G, Jacks T, Judith F, Taylor J, Schoen WR, Krupa D, Cunningham P, Clark J, Smith RG (1994) Efficacy and specificity of L-692,429, a novel nonpeptidyl growth hormone secretagogue, in beagles. Endocrinology 134:695–701. doi: 10.1210/en.134.2.695 PubMedGoogle Scholar
  158. 158.
    Sluder A, Shah S, Cassayre J, Clover R, Maienfisch P et al (2012) Spiroindolines identify the vesicular acetylcholine transporter as a novel target for insecticide action. PLoS One 7:e34712. doi: 10.1371/journal.pone.0034712 CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Inoue S, Okada K, Tanino H, Hashizume K, Kakoi H (1994) Total synthesis of (\(\pm \))-surugatoxin. Heterocycl 50:2729–2752. doi: 10.1016/S0040-4020(01)86989-1 Google Scholar
  160. 160.
    Inoue S, Okada K, Tanino H, Kakoi H (1988) Synthesis of (+)-prosurugatoxin and ring transformation of prosurugatoxin into surugatoxin. Tetrahedron Lett 29:1547–1550. doi: 10.1016/S0040-4039(00)80348-2 CrossRefGoogle Scholar
  161. 161.
    Seo JH, Liu P, Weinreb SM (2010) Evolution of a strategy for total synthesis of the marine fungal alkaloid \((\pm )\)-communesin F. J Org Chem 75:2667–2680. doi: 10.1021/jo100339k CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Lesma G, Landoni N, Sacchetti A, Silvani A (2010) The spiropiperidine-3,3\(^\prime \)-oxindoles caffold: a type II \({\beta }\)-turn peptideisostere. Tetrahedron 66:4474–4478. doi: 10.1016/j.tet.2010.04.077 CrossRefGoogle Scholar
  163. 163.
    Han Y-Y, Han W-Y, Hou X, Zhang X-M, Yuan W-C (2012) \(\text{ FeCl }_{3}\)-catalyzed stereoselective construction of spirooxindole tetrahydroquinolines via tandem 1,5-hydride transfer/ring closure. Org Lett 14:4054–4057. doi: 10.1021/ol301559k CrossRefPubMedGoogle Scholar
  164. 164.
    Kiruthika SE, Lakshmi NV, Banu BR, Perumal PT (2011) A facile strategy for the one pot multicomponent synthesis of spiro dihydropyridines from amines and activated alkynes. Tetrahedron Lett 52:6508–6511. doi: 10.1016/j.tetlet.2011.09.119 CrossRefGoogle Scholar
  165. 165.
    Alizadeh A, Mokhtari J (2011) Novel four-component route to the synthesis of spiro[indoline-3,4\(^{\prime }\)-pyridine]-3\(^{\prime }\)-carboxylate derivatives. Tetrahedron 67:3519–3523. doi: 10.1016/j.tet.2011.03.032 CrossRefGoogle Scholar
  166. 166.
    Ghahremanzadeh R, Ahadi S, Shakibaei GI, Bazgir A (2010) Grindstone chemistry: one-pot synthesis of spiro[diindenopyridine-indoline]triones and spiro[acenaphthylene-diindenopyridine]triones. Tetrahedron Lett 51:499–502. doi: 10.1016/j.tetlet.2009.11.041 CrossRefGoogle Scholar
  167. 167.
    Manpadi M et al (2007) Three-component synthesis and anticancer evaluation of polycyclic indenopyridines lead to the discovery of a novel indenoheterocycle with potent apoptosis inducing properties. Org Biomol Chem 5:3865–3872. doi: 10.1039/B713820B CrossRefPubMedGoogle Scholar
  168. 168.
    Ahadi S, Ghahremanzadeh R, Mirzaei P, Bazgir A (2009) Synthesis of spiro[benzopyrazolonaphthyridine-indoline]-diones and spiro[chromenopyrazolopyridine-indoline]-diones by one-pot, three-component methods in water. Tetrahedron 65:9316–9321. doi: 10.1016/j.tet.2009.09.009 CrossRefGoogle Scholar
  169. 169.
    Quiroga J, Portillo S, Pérez A, Gálvez J, Abonia R, Insuasty B (2011) An efficient synthesis of pyrazolo[3,4-b]pyridine-4-spiroindolinones by a three-component reaction of 5-aminopyrazoles, isatin, and cyclic \({\beta }\)-diketones. Tetrahedron Lett 52:2664–2666. doi: 10.1016/j.tetlet.2011.03.067 CrossRefGoogle Scholar
  170. 170.
    Ghahremanzadeh R, Sayyafi M, Ahadi S, Bazgir A (2009) Novel one-pot, three-component synthesis of spiro[indoline-pyrazolo[4\(^{\prime }\),3\(^{\prime }\):5,6]pyrido[2,3-d]pyrimidine]trione library. J Comb Chem 11:393–396. doi: 10.1021/cc8001958 CrossRefPubMedGoogle Scholar
  171. 171.
    Shakibaei GI, Feiz A, Bazgir A (2011) A simple and catalyst-free three-component method for the synthesis of spiro[indenopyrazolopyridine indoline]diones and spiro[indenopyridopyrimidine indoline]triones. Comptes Rendus Chimie 14:556–562. doi: 10.1016/j.crci.2010.10.001 CrossRefGoogle Scholar
  172. 172.
    Jadidi K, Ghahremanzadeh R, Bazgir A (2009) Spirooxindoles: reaction of 2,6-diaminopyrimidin-4(3H)-one and isatins. Tetrahedron 65:2005–2009. doi: 10.1016/j.tet.2009.01.013 CrossRefGoogle Scholar
  173. 173.
    Shakibaei GI, Feiz A, Khavasi HR, Soorki AA, Bazgir A (2011) Simple three-component method for the synthesis of spiroindeno[1,2-b]pyrido[2,3-d]pyrimidine-5,3\(^\prime \)-indolines. ACS Comb Sci 13:96–99. doi: 10.1021/co1000053 CrossRefPubMedGoogle Scholar
  174. 174.
    Rahmati A, Khalesi Z (2012) A one-pot, three-component synthesis of spiro[indolineisoxazolo[4\(^{\prime }\),3\(^{\prime }\):5,6]pyrido[2,3-d]pyrimidine]triones in water. Tetrahedron 68:8472–8479. doi: 10.1016/j.tet.2012.07.073 CrossRefGoogle Scholar
  175. 175.
    Venkatesan H, Davis MC, Altas Y, Snyder JP, Liotta DC (2001) Total synthesis of SR 121463 A, a highly potent and selective vasopressin \(\text{ V }_{2}\) receptor antagonist. J Org Chem 66:3653–3661. doi: 10.1021/jo0004658 CrossRefPubMedGoogle Scholar
  176. 176.
    Liu J-J, Zhang Z (2008) Spiroindolinone derivatives (Hoffmann-La Roche AG). PCT Int Appl. WO2008(055812)Google Scholar
  177. 177.
    Sconhaber J, Mueller ThJJ (2011) Luminescent bichromophoric spiroindolones—synthesis and electronic properties. Org Biomol Chem 9:6196–6199. doi: 10.1039/c1ob05703k CrossRefGoogle Scholar
  178. 178.
    Beccalli EM, Clerici F, Gelmi ML (1999) 6-Chloro-spiroeyelohexenindol-2-ones: an unusual ring transformation to ethyl 2-(cyelohexa-1,4-dlenyl)phenylearbamates. Tetrahedron 55:8579–8586. doi: 10.1016/S0040-4020(99)00475-5 CrossRefGoogle Scholar
  179. 179.
    Beccalli EM, Clerici F, Gelmi ML (2003) A new synthetic procedure to spiro[cyclohexane-1,3\(^{\prime }\)-indoline]-2\(^{\prime }\),4-diones. Tetrahedron 59:4615–4622. doi: 10.1016/S0040-4020(03)00627-6 CrossRefGoogle Scholar
  180. 180.
    Ashimori’ A, Overman LE (1992) Catalytic asymmetric synthesis of quarternary carbon centers. Palladium-catalyzed formation of either enantiomer of spirooxindoles and related spirocyclics using a single enantiomer of a chiral diphosphine ligand. J Org Chem 57(4571–4572):4671. doi: 10.1021/jo00043a005 Google Scholar
  181. 181.
    Jia ZJ, Jiang H, Li JL, Gschwend B, Li QZ, Yin X, Grouleff J, Chen YC, Jørgensen KA (2011) Trienamines in asymmetric organocatalysis: Diels-Alder and tandem reactions. J Am Chem Soc 133:5053–5061. doi: 10.1021/ja1112194 CrossRefPubMedGoogle Scholar
  182. 182.
    Tan B, Hernández-Torres G, Barbas CF (2011) Highly efficient hydrogen-bonding catalysis of the Diels-Alder reaction of 3-vinylindoles and methyleneindolinones provides carbazolespirooxindole skeletons. J Am Chem Soc 133:12354–12357. doi: 10.1021/ja203812h CrossRefPubMedGoogle Scholar
  183. 183.
    Wei Q, Gong L-Z (2010) Organocatalytic asymmetric formal [4+2] cycloaddition for the synthesis of spiro[4-cyclohexanone-1,3\(^{\prime }\)-oxindoline] derivatives in high optical purity. Org Lett 12:1008–1011. doi: 10.1021/ol100020v CrossRefPubMedGoogle Scholar
  184. 184.
    Li Y, Su X, Zhou W, Li W, Zhang J (2015) Amino-acid derived phosphine-catalyzed enantioselective 1,4- dipolar spiroannulation of cyclobutenones and isatylidenemalononitrile. Chem Eur J 21:1–6. doi: 10.1002/chem.201406475 CrossRefGoogle Scholar
  185. 185.
    Richmond E, Duguet N, Slawin AMZ, Lébl T, Smith AD (2012) Asymmetric pericyclic cascade approach to spirocyclic oxindoles. Org Lett 14:2762–2765. doi: 10.1021/ol300982f CrossRefPubMedGoogle Scholar
  186. 186.
    Bencivenni G, Wu LY, Mazzanti A, Giannichi B, Pesciaioli F, Song MP, Bartoli G, Melchiorre P (2009) Targeting structural and stereochemical complexity by organocascade catalysis: construction of spirocyclic oxindoles having multiple stereocenters. Angew Chem Int Ed 48:7200–7203. doi: 10.1002/anie.200903192 CrossRefGoogle Scholar
  187. 187.
    Jiang K, Jia Z-J, Yin X, Wu L, Chen Y-C (2010) Asymmetric quadruple aminocatalytic domino reactions to fused carbocycles incorporating a spirooxindole motif. Org Lett 12:2766–2769. doi: 10.1021/ol100857s CrossRefPubMedGoogle Scholar
  188. 188.
    Jiang K, Jia Z-J, Chen S, Li Wu, Chen Y-C (2010) Organocatalytic tandem reaction to construct six-membered spirocyclic oxindoles with multiple chiral centres through a formal [2+2+2] annulation. Chem Eur J 16:2852–2856. doi: 10.1002/chem.200903009 CrossRefPubMedGoogle Scholar
  189. 189.
    Ghosh AK, Zhou B (2013) Enantioselective synthesis of spiro[cyclohexane-1,3\(^\prime \)-indolin]-2\(^\prime \)-ones containing multiple stereocenters via organocatalytic Michael/aldol cascade reactions. Tetrahedron Lett 54:2311–2314. doi: 10.1016/j.tetlet.2013.02.030 CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Companyo X, Zea A, Alba A-NR, Mazzanti A, Moyano A, Rios R (2010) Organocatalytic synthesis of spiro compounds via a cascade Michael-Michael-aldol reaction. Chem Commun 46:6953–6955. doi: 10.1039/C0CC01522A CrossRefGoogle Scholar
  191. 191.
    Lan YB, Zhao H, Liu ZM, Liu GG, Tao JC, Wang XW (2011) Chiral counteranion synergistic organocatalysis under high temperature: efficient construction of optically pure spiro[cyclohexanone-oxindole] backbone. Org Lett 13:4866–4869. doi: 10.1021/ol201943g CrossRefPubMedGoogle Scholar
  192. 192.
    Sun QS, Chen X-Y, Zhu H, Lin H, Sun X-W, Lin G-Q (2015) Asymmetric synthesis of poly-substituted spirocyclohexane oxindole via a squaramide catalyzed cascade Michael-Michael-aldol sequence. Org Chem Front 2:110–113. doi: 10.1039/C4QO00299G CrossRefGoogle Scholar
  193. 193.
    Basavaiah D, Reddy KR (2007) Simple and one-pot protocol for synthesis of indene-spiro-oxindoles involving tandem prins and friedel-crafts reactions. Org Lett 9:57–60. doi: 10.1021/ol062561m CrossRefPubMedGoogle Scholar
  194. 194.
    Gorokhovik I, Neuville L, Zhu J (2011) Trifluoroacetic acid-promoted synthesis of 3-hydroxy, 3-amino and spirooxindoles from \({\alpha }\)-keto-N-anilides. Org Lett 13:5536–5539. doi: 10.1021/ol202263a CrossRefPubMedGoogle Scholar
  195. 195.
    Bond RF, Boeyens JCA, Holzapfel CW, Steyn PS (1979) Cyclopiamines A and B, novel oxindole metabolites of Penicillium cyclopium westling. J Chem Soc, Perkin Trans 1:1751–1761. doi: 10.1039/P19790001751 CrossRefGoogle Scholar
  196. 196.
    Mugishima T, Tsuda M, Kasai Y, Ishiyama H, Fukushi E, Kawabata J, Watanabe M, Akao K, Kobayashi J (2005) Absolute stereochemistry of citrinadins A and B from marine-derived fungus. J Org Chem 70:9430–9435. doi: 10.1021/jo051499o CrossRefPubMedGoogle Scholar
  197. 197.
    Pettersson M, Knueppel D, Martin SF (2007) Concise, stereoselective approach to the spirooxindole ring system of citrinadin A. Org Lett 9:4623–4626. doi: 10.1021/ol702132v CrossRefPubMedGoogle Scholar
  198. 198.
    Bian Z, Marvin CC, Martin SF (2013) Enantioselective total synthesis of (-)-citrinadin A and revision of its stereochemical structure. J Am Chem Soc 135:10886–10889. doi: 10.1021/ja405547f CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Guerrero CA, Sorensen EJ (2011) Concise, stereocontrolled synthesis of the citrinadin B core architecture. Org Lett 13:5164–5167. doi: 10.1021/ol2020362 CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Kong K, Enquist JA Jr, McCallum ME, Smith GM, Matsumaru T, Menhaji-Klotz E, Wood JL (2013) An enantioselective total synthesis and stereochemical revision of (+)-citrinadin B. J Am Chem Soc 135:10890–10893. doi: 10.1021/ja405548b CrossRefPubMedGoogle Scholar
  201. 201.
    Li X, Li YM, Peng FZ, Wu ST, Li ZQ, Sun ZW, Zhang HB, Shao ZH (2011) Highly enantioselective one-pot synthesis of spirocyclopentaneoxindoles containing the oxime group by organocatalyzed Michael addition/ISOC/fragmentation sequence. Org Lett 13:6160–6163. doi: 10.1021/ol2024955 CrossRefPubMedGoogle Scholar
  202. 202.
    Albertshofer K, Tan B, Barbas CF (2012) Assembly of spirooxindole derivatives containing four consecutive stereocenters via organocatalytic Michael-Henry cascade reactions. Org Lett 14:1834–1837. doi: 10.1021/ol300441z CrossRefPubMedGoogle Scholar
  203. 203.
    Albertshofer K, Anderson KE, Barbas CF (2012) Assembly of spirooxindole derivatives via organocatalytic iminium-enamine cascade reactions. Org Lett 14:5968–5971. doi: 10.1021/ol302876c CrossRefPubMedGoogle Scholar
  204. 204.
    Jiang K, Tiwari B, Chi YR (2012) Access to spirocyclic oxindoles via N-heterocyclic carbene-catalyzed reactions of enals and oxindole-derived \({\alpha },{\beta }\)-unsaturated imines. Org Lett 14:2382–2385. doi: 10.1021/ol3008028 CrossRefPubMedGoogle Scholar
  205. 205.
    Sun W, Zhu G, Wu C, Hong L, Wang R (2012) An organocatalytic cascade strategy for the enantioselective construction of spirocyclopentane bioxindoles containing three contiguous stereocenters and two spiro quaternary centers. Chem Eur J 18:6737–6741. doi: 10.1002/chem.201200478 CrossRefPubMedGoogle Scholar
  206. 206.
    Sun W, Zhu G, Wu C, Hong L, Wang R (2012) “Organo-metal” synergistic catalysis: the 1+1\(>\)2 effect for the construction of spirocyclopentene oxindoles. Chem Eur J 18:13959–13963. doi: 10.1002/chem.201201976 CrossRefPubMedGoogle Scholar
  207. 207.
    Tian X, Melchiorre P (2013) Control of remote stereochemistry in the synthesis of spirocyclic oxindoles: vinylogous organocascade catalysis. Angew Chem Int Ed 52:1–5. doi: 10.1002/anie.201301017 CrossRefGoogle Scholar
  208. 208.
    Ding L-Z, Zhong T-S, Wu T, Wang Y-M (2014) Highly enantioselective construction of spirocyclopentaneoxindoles containing four consecutive stereocenters through an organocatalytic iminium–enamine cascade reaction. Eur J Org Chem 24:5139–5143. doi: 10.1002/ejoc.201402687 CrossRefGoogle Scholar
  209. 209.
    Trost BM, Cramer N, Silverman SM (2007) Enantioselective construction of spirocyclic oxindolic cyclopentanes by palladium-catalyzed trimethylenemethane-[3+2]-cycloaddition. J Am Chem Soc 129:12396–12397. doi: 10.1021/ja075335w CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Voituriez A, Pinto N, Neel M, Retailleau P, Marinetti A (2010) An organocatalytic [3+2] cyclisation strategy for the highly enantioselective synthesis of spirooxindoles. Chem Eur J 16:12541–12544. doi: 10.1002/chem.201001791 CrossRefPubMedGoogle Scholar
  211. 211.
    Tan B, Candeias NR, Barbas CF (2011) Core-structure-motivated design of a phosphine-catalyzed [3+2] cycloaddition reaction: enantioselective syntheses of spirocyclopenteneoxindoles. J Am Chem Soc 133:4672–4675. doi: 10.1021/ja110147w CrossRefPubMedGoogle Scholar
  212. 212.
    Peng J, Huang X, Jiang L, Cui H-L, Chen Y-C (2011) Tertiary amine-catalyzed chemoselective and asymmetric [3+2] annulation of Morita-Baylis-Hillman carbonates of isatins with propargyl sulfones. Org Lett 13:4584–4587. doi: 10.1021/ol201776h CrossRefPubMedGoogle Scholar
  213. 213.
    Wang Y, Liu L, Zhang T, Zhong N-J, Wang D, Chen Y-J (2012) Diastereo- and enantioselective [3+2] cycloaddition reaction of Morita-Baylis-Hillman carbonates of isatins with n-phenylmaleimide catalyzed by Me-Duphos. J Org Chem 77:4143–4147. doi: 10.1021/jo3002535 CrossRefPubMedGoogle Scholar
  214. 214.
    Jiang T, Kuhen KL, Wolff K, Yin H, Bieza K, Caldwell J, Bursulaya B, Wu TYH, He Y (2006) Design, synthesis and biological evaluations of novel oxindoles as HIV-1 non-nucleoside reverse transcriptase inhibitors. Part I. Bioorg Med Chem Lett 16:2105–2108. doi: 10.1016/j.bmcl.2006.01.073 CrossRefPubMedGoogle Scholar
  215. 215.
    Jiang T, Kuhen KL, Wolff K, Yin H, Bieza K, Caldwell J, Bursulaya B, Wu TYH, Tuntland T, Zhang K, Karanewsky D, He Y (2006) Design, synthesis and biological evaluations of novel oxindoles as HIV-1 non-nucleoside reverse transcriptase inhibitors. Part II. Bioorg Med Chem Lett 16:2109–2112. doi: 10.1016/j.bmcl.2006.01.066 CrossRefPubMedGoogle Scholar
  216. 216.
    Dou X, Lu Y (2012) Diastereodivergent synthesis of 3-spirocyclopropyl-2-oxindoles through direct enantioselective cyclopropanation of oxindoles. Chem Eur J 18:8315–8319. doi: 10.1002/chem.201200655 CrossRefPubMedGoogle Scholar
  217. 217.
    Shaabanzadeh M, Khabari F (2010) One-pot synthesis of new spiro[cyclopropane-1,3\(^{\prime }\)-[3H]indol]-2\(^{\prime }\)(1\(^{\prime }\)H)-ones from 3-phenacylideneoxindoles. J Heterocycl Chem 47:949–953. doi: 10.1002/jhet.394 CrossRefGoogle Scholar
  218. 218.
    Kumari G, Nutan Modi M, Gupta SK, Singh RK (2011) Rhodium(II) acetate-catalyzed stereoselective synthesis, SAR and anti-HIV activity of novel oxindoles bearing cyclopropane ring. Eur J Med Chem 46:1181–1188. doi: 10.1016/j.ejmech.2011.01.037 CrossRefPubMedGoogle Scholar
  219. 219.
    Muthusamy S, Azhagan D, Gnanaprakasam B, Suresh E (2010) Diastereoselective synthesis of strained spiro-cyclopropanooxindoles from cyclic diazoamides. Tetrahedron Lett 51:5662–5665. doi: 10.1016/j.tetlet.2010.07.159 CrossRefGoogle Scholar
  220. 220.
    Muthusamy S, Ramkumar R (2014) Solvent- and transition metal-free synthesis of spiro[cyclopropane-1,3- oxindoles] from cyclic diazoamides. Tetrahedron Lett 55:6389–6393. doi: 10.1016/j.tetlet.2014.09.086 CrossRefGoogle Scholar
  221. 221.
    Oseka M, Noole A, Zari S, Öeren M, Järving I, Lopp M, Kanger T (2014) Asymmetric diastereoselective synthesis of spirocyclopropane derivatives of oxindole. Eur J Org Chem 17:3599–3606. doi: 10.1002/ejoc.201402061 CrossRefGoogle Scholar
  222. 222.
    Pedras MSC, Okanga FI, Zaharia IL, Khan AQ (2000) Phytoalexins from crucifers: synthesis, biosynthesis, and Biotransformation. Phytochem 53:161–176. doi: 10.1016/S0031-9422(99)00494-X CrossRefGoogle Scholar
  223. 223.
    Kutschy P, Salayová A, Curillová Z, Kozár T, Mezencev R, Mojzis J, Pilátová M, Balentová E, Pazdera P, Sabol M, Zburová M (2009) 2-(Substituted phenyl)amino analogs of 1-methoxyspirobrassinol methyl ether: synthesis and anticancer activity. Bioorg Med Chem 17:3698–3712. doi: 10.1016/j.bmc.2009.03.064 CrossRefPubMedGoogle Scholar
  224. 224.
    Kutschy P, Suchý M, Monde K, Harada N, Marušková R, Čurillová Z, Dzurilla M, Miklošová M, Mezencev R, Mojžiš J (2002) Spirocyclization strategy toward indole phytoalexins. The first synthesis of \((\pm )\)-1-methoxyspirobrassinin, \((\pm )\)-1-methoxyspirobrassinol, and \((\pm )\)-1-methoxyspirobrassinol methyl ether. Tetrahedron Lett 43:9489–9492. doi: 10.1016/S0040-4039(02)02452-8 CrossRefGoogle Scholar
  225. 225.
    Zhang Y, Li ZJ, Xu HS, Zhang Y, Wang W (2011) Organocatalytic asymmetric Henry reaction of isatins: highly enantioselective synthesis of 3-hydroxy-2-oxindoles. RSC Adv 1:389–392. doi: 10.1039/C1RA00477H CrossRefGoogle Scholar
  226. 226.
    Chen W-B, Wu Z-J, Hu J, Cun J-F, Zhang X-M, Yuan W-C (2011) Organocatalytic direct asymmetric aldol reactions of 3-isothiocyanato oxindoles to ketones: stereocontrolled synthesis of spirooxindoles bearing highly congested contiguous tetrasubstituted stereocenters. Org Lett 13:2472–2475. doi: 10.1021/ol200724q
  227. 227.
    Han Y-Y, Chen W-B, Han W-Y, Wu Z-J, Zhang X-M, Yuan W-C (2012) Highly efficient and stereoselective construction of dispiro-[oxazolidine-2-thione]bisoxindoles and dispiro[imidazolidine-2-thione]bisoxindoles. Org Lett 14:490–493. doi: 10.1021/ol203081x CrossRefPubMedGoogle Scholar
  228. 228.
    Jiang X, Cao Y, Wang Y, Liu L, Shen F, Wang R (2010) A unique approach to the concise synthesis of highly optically active spirooxazolines and the discovery of a more potent oxindole-type phytoalexin analogue. J Am Chem Soc 132:15328–15333. doi: 10.1021/ja106349m CrossRefPubMedGoogle Scholar
  229. 229.
    Badillo JJ, Arevalo GE, Fettinger JC, Franz AK (2011) Titanium-catalyzed stereoselective synthesis of spirooxindole oxazolines. Org Lett 13:418–421. doi: 10.1021/ol1027305 CrossRefPubMedGoogle Scholar
  230. 230.
    Ueda T, Inada M, Okamoto I, Morita N, Tamura O (2008) Synthesis of maremycins a and d1 via cycloaddition of a nitrone with (e)-3-ethylidene-1-methylindolin-2-one. Org Lett 10:2043–2046. doi: 10.1021/ol800515w CrossRefPubMedGoogle Scholar
  231. 231.
    Singh A, Roth GP (2011) A [3+2] dipolar cycloaddition route to 3-hydroxy-3-alkyl oxindoles: an approach to pyrrolidinoindoline alkaloids. Org Lett 13:2118–2121. doi: 10.1021/ol200547m CrossRefPubMedGoogle Scholar
  232. 232.
    Bouhfid R, Joly N, Essassi EM, Lequart V, Massoui M, Martin P (2011) Synthesis of new spiro[1,4,2-dioxazole-5,3\(^{\prime }\)-indolin]-2\(^{\prime }\)-one by 1,3-dipolar cycloaddition. Synth Commun 41:2096–2102. doi: 10.1080/00397911.2010.497595 CrossRefGoogle Scholar
  233. 233.
    Ribeiro CJA, Kumar SP, Moreira R, Santos MMM (2012) Efficient synthesis of spiroisoxazoline oxindoles. Tetrahedron Lett 53:281–284. doi: 10.1016/j.tetlet.2011.10.139 CrossRefGoogle Scholar
  234. 234.
    Gomez-Monterrey I, Bertamino A, Porta A, Carotenuto A, Musella S, Aquino C, Granata I, Sala M, Brancaccio D, Picone D, Ercole C, Stiuso P, Campiglia P, Grieco P, Ianelli P, Maresca B, Novellino E (2010) Identification of the spiro(oxindole-3,3’-thiazolidine)-based derivatives as potential p53 activity modulators. J Med Chem 53(8319–8329):8319. doi: 10.1021/jm100838z CrossRefPubMedGoogle Scholar
  235. 235.
    Vintonyak VV, Warburg K, Kruse H, Grimme S, Hubel K, Rauh D, Waldmann H (2010) Identification of thiazolidinones spiro-fused to indolin-2-ones as potent and selective inhibitors of the mycobacterium tuberculosis protein tyrosine phosphatase B. Angew Chem Int Ed 49:5902–5905. doi: 10.1002/anie.201002138 CrossRefGoogle Scholar
  236. 236.
    Kaminskyy D, Khyluk D, Vasylenko O, Zaprutko L, Lesyk R (2011) A facile synthesis and anticancer activity evaluation of spiro[thiazolidinone-isatin] conjugates. Sci Pharm 79:763–777. doi: 10.3797/scipharm.1109-14 CrossRefPubMedPubMedCentralGoogle Scholar
  237. 237.
    Chen H, Shi D (2011) Efficient one-pot synthesis of spiro[indoline-3,40-pyrazolo[3,4-e][1,4]thiazepine]dione via three-component reaction. Tetrahedron 67:5686–5692. doi: 10.1016/j.tet.2011.05.069 CrossRefGoogle Scholar
  238. 238.
    Cao Y, Shen FF, Zhang FT, Wang R (2012) Catalytic asymmetric michael addition/cyclization of isothiocyanato oxindoles: highly efficient and versatile approach for the synthesis of 3,2\(^{\prime }\)-pyrrolidinyl mono- and bi-spirooxindole frameworks. Chem Eur J 19:1184–1188. doi: 10.1002/chem.201204114 CrossRefPubMedGoogle Scholar
  239. 239.
    Wu H, Zhang LL, Tian ZQ, Huang YD, Wang YM (2012) Highly efficient enantioselective construct hion of bispirooxindoles containing three stereocenters through an organocatalytic cascade michael-cyclization reaction. Chem Eur J 15:1246–1249. doi: 10.1002/chem.201203221 Google Scholar
  240. 240.
    Curillova’ Z, Kutschy P, Budovska M, Nakahashib A, Mondeb K (2007) Stereoselective synthesis of (R)-(+)-1-methoxyspirobrassinin, (2R,3R)-(-)-1-methoxyspirobrassinol methyl ether and their enantiomers or diastereoisomers. Tetrahedron Lett 48:8200–8204. doi: 10.1016/j.tetlet.2007.09.080 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Tetyana L. Pavlovska
    • 1
  • Ruslan Gr. Redkin
    • 2
  • Victoria V. Lipson
    • 1
    • 3
  • Dmytro V. Atamanuk
    • 4
  1. 1.State Scientific Institution“Institute for Single Crystals” of National Academy of Sciences of UkraineKharkovUkraine
  2. 2.National University of PharmacyKharkovUkraine
  3. 3.State Institution “V.Ya. Danilevsky Institute of Endocrine Pathology Problems”Academy of Medical Sciences of UkraineKharkovUkraine
  4. 4.Dmytro Atamanyuk MutabilisRomainvilleFrance

Personalised recommendations