Molecular Diversity

, Volume 19, Issue 4, pp 703–708 | Cite as

A direct access to heptasubstituted biguanides

Full-Length Paper


An efficient and experimentally simple copper-catalyzed carbon–nitrogen bond formation for the synthesis of \(N\)-arylated biguanides starting from aryl halides, carbodiimides, and 1,1,3,3-tetramethylguanidine is reported. The potential diversity of this type of reaction, easily available starting materials, and commercially available low-cost catalysts are the incremental features of this methodology.

Graphical Abstract


\(N\)-Arylation Carbodiimides Copper-catalyzed Biguanides Tetramethylguanidine 

Supplementary material

11030_2015_9601_MOESM1_ESM.doc (2.2 mb)
Supplementary material 1 (doc 2236 KB)


  1. 1.
    Srivastava VP, Yadav DK, Yadav AK, Watal G, Yadav LDS (2013) A copper-catalyzed formamidation of arylboronic acids: direct access to formanilides. Synlett 24:1423–1427. doi: 10.1021/ol200750p CrossRefGoogle Scholar
  2. 2.
    Kumar AS, Ramani T, Sreedhar B (2013) Magnetically separable \(\text{ CuFe }_{2}\text{ O }_{4}\) nanoparticles in PEG: a recyclable catalytic system for the amination of aryl iodides. Synlett 24:938–942. doi: 10.1055/s-0032-1316905 CrossRefGoogle Scholar
  3. 3.
    Yavari I, Nematpour M (2014) Copper-catalyzed \(N\)-arylation of 1,1,3,3- tetramethylguanidine-phenyl isocyanate adduct. Helv Chim Acta 97:1132–1135. doi: 10.1002/hlca.201300418 CrossRefGoogle Scholar
  4. 4.
    Yavari I, Ghazanfarpur-Darjani M, Solgi Y, Ahmadian S (2011) Copper(I) iodide catalyzed formation of aryl hydrazides from a mitsunobo reagent and aryl halides. Synlett 12:1745–1747. doi: 10.1055/s-0030-1260802 CrossRefGoogle Scholar
  5. 5.
    Evano G, Blanchard N, Toumi M (2008) Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis. Chem Rev 108:3054–3131. doi: 10.1021/cr8002505 CrossRefPubMedGoogle Scholar
  6. 6.
    Monnier F, Taillefer M (2009) Catalytic C–C, C–N, and C–O Ullmann-type coupling reactions. Angew Chem Int Ed 48:6954–6971. doi: 10.1002/anie.200804497 CrossRefGoogle Scholar
  7. 7.
    Yavari I, Sodagar E, Nematpour M (2014) CuO nanoparticles as effective reusable heterogeneous catalyst for \(S\)-arylation reactions. Helv Chim Acta 97:420–425. doi: 10.1002/hlca.201300345 CrossRefGoogle Scholar
  8. 8.
    Xue WJ, Guo YQ, Gao FF, Li HZ, Wu AX (2013) A novel self-sequence reaction network involving a set of six reactions in one pot: the synthesis of substituted benzothiazoles from aromatic ketones and anilines. Org Lett 15:890–893. doi: 10.1021/ol400029t CrossRefPubMedGoogle Scholar
  9. 9.
    Gelbard G, Vieffaure-Joly F (1998) Polynitrogen strong bases: 1-new syntheses of biguanides and their catalytic properties in transesterification reactions. Tetrahedron Lett 39:2743–2746. doi: 10.1016/S0040-4039(98)00300-1 CrossRefGoogle Scholar
  10. 10.
    Katritzky AR, Tala SR, Singh A (2010) Biguanidines, guanylureas and guanylthioureas. Arkivoc viii:76–96Google Scholar
  11. 11.
    Herres-Pawlis S (2009) Aubergewöhnliche donoren und synthetische vielfalt: Guanidine. Nachr Chem 57:20–23. doi: 10.1002/nadc.200960857 CrossRefGoogle Scholar
  12. 12.
    Bogolubsky AV, Grishchenko A, Pipko SE, Konovets A, Chuprina A, Tolmachev A, Boyko AN, Chekotylo A, Lukin O (2013) A solution-phase parallel synthesis of alkylated guanidines from thioisocyanates and amines. Mol Divers 3:471–477. doi: 10.1007/s11030-013-9444-z CrossRefGoogle Scholar
  13. 13.
    Debray J, Bonte S, Lozach O, Meijer L, Demeunynck M (2012) Catalyst-free synthesis of quinazolin-4-ones from (hetero)aryl-guanidines: application to the synthesis of pyrazolo[4,3-\( f\)]quinazolin-9-ones, a new family of DYRK1A inhibitors. Mol Divers 16:659–667. doi: 10.1007/s11030-012-9397-7 CrossRefPubMedGoogle Scholar
  14. 14.
    Le VD, Wong CH (2000) Synthesis of 2-substituted polyhydroxytetrahydropyrimidines (\(N\)-hydroxy cyclic guanidino-sugars): transition-state mimics of enzymatic glycosidic cleavage. J Org Chem 65:2399–2409. doi: 10.1021/jo9915574 CrossRefPubMedGoogle Scholar
  15. 15.
    Reddy NL, Fan W, Magar SS, Perlman ME, Yost E, Zhung L, Berlove D, Fischer JB, Howie KB, Wolcott T, Durant GJ (1998) Design, synthesis, and pharmacological evaluation of conformationally constrained analogues of \(N,N{^\prime }\)-diaryl- and \(N\)-aryl-\(N\)- aralkylguanidines as potent inhibitors of neuronal Na\(^{+}\) channels. J Med Chem 41:3041–3068. doi: 10.1021/jm980124a CrossRefGoogle Scholar
  16. 16.
    Berlinck RGS, Burtoloso ACB, Kossuga MH (2008) The chemistry and biology of organic guanidine derivatives. Nat Prod Rep 25:919–954. doi: 10.1039/B507874C CrossRefPubMedGoogle Scholar
  17. 17.
    Bailey PJ, Pace S (2001) The coordination chemistry of guanidines and guanidinates. Coord Chem Rev 214:91–141. doi: 10.1016/S0010-8545(00)00389-1 CrossRefGoogle Scholar
  18. 18.
    Williams A, Ibrahim TI (1981) Carbodiimide chemistry: recent advances. Chem Rev 81:589–636. doi: 10.1021/cr00046a004 CrossRefGoogle Scholar
  19. 19.
    Glasovac Z, Troselj P, Jusinski I, Margetic D, Eckert-Maksic M (2013) Synthesis of highly basic hexasubstituted biguanides by environmentally friendly methods. Synlett 24:2540–2544. doi: 10.1055/s-0033-1339876 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of ChemistryTarbiat Modares UniversityTehranIran

Personalised recommendations