Skip to main content

Advertisement

Log in

Regioselective alkylation of 1,3,4,5-tetrahydrobenzo[d]azepin-2-one and biological evaluation of the resulting alkylated products as potentially selective \(\hbox {5-HT}_{\mathrm{2C}}\) agonists

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The benzazepine ring system has offered interesting CNS-active medicinal agents. Taking this privileged structure as the basic scaffold, \(\hbox {C}_{1}\) and/or \(\hbox {N}_{3}\)-alkylated benzazepin-2-one derivatives and their reduced analogs have been prepared as potential \(\hbox {5-HT}_{\mathrm{2C}}\) receptor agonists. The selective alkylation at the \(\hbox {C}_{1}\) and/or \(\hbox {N}_{3}\) positions of this seven-membered lactam ring is here reported for the first time under different reaction conditions. The synthesized compounds were evaluated for their biological profile as potential \(\hbox {5-HT}_{\mathrm{2C}}\) agonists using a classic pharmacological approach. Three derivatives (15, 17, and 20) have shown promising \(\hbox {5-HT}_{\mathrm{2C}}\) agonistic activity which can be further optimized as anti-obesity agents for the treatment of male sexual dysfunction. Further, a homology model for \(\hbox {5-HT}_{\mathrm{2C}}\) receptor was generated using MODELLER, and ligand–receptor interactions for these potential molecules were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alexander SPH, Mathie A, Peters JA (2006) Guide to receptors and channels. Br J Pharmacol 147:S1–S180. doi:10.1038/sj.bjp.0706651

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Nilsson BM (2006) 5-Hydroxytryptamine 2C (5-HT2C) receptor agonists as potential anti-obesity agents. J Med Chem 49:4023–4034. doi:10.1021/jm058240i

    Article  CAS  PubMed  Google Scholar 

  3. Bickerdike MJ (2003) 5-HT2C receptor agonists as potential drugs for the treatment of obesity. Curr Top Med Chem 3:885–897. doi:10.2174/1568026033452249

    Article  CAS  PubMed  Google Scholar 

  4. Bello NT, Liang NC (2011) The use of serotonergic drugs to treat obesity—is there any hope? Drug Des Devel Ther 5:95–109. doi:10.2147/DDDT.S11859

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Sheridan MH (2013) Lorcaserin: a review of its use in chronic weight management. Drugs 73:463–473. doi:10.1007/s40265-013-0035-1

    Article  Google Scholar 

  6. Higgins GA, Sellers EM, Fletcher PJ (2013) From obesity to substance abuse: therapeutic opportunities for \(\text{5-HT }_{{\rm 2C}}\) receptor agonists. Trends Pharmacol Sci 34:560–570. doi:10.1016/j.tips.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  7. Dutton AC, Barnes NM (2006) Anti-obesity pharmacotherapy: future perspectives utilising \(\text{5-HT }_{{\rm 2C}}\) receptor agonists. Drug Discov Today Ther Strateg 3:577–583. doi:10.1016/j.ddstr.2006.11.005

    Article  Google Scholar 

  8. Smith BM, Thomsen WJ, Grottick AJ (2006) The potential use of selective \(\text{5-HT }_{{\rm 2C}}\) agonists in treating obesity. Expert Opin Invest Drugs 15:257–266. doi:10.1517/13543784.15.3.257

    Article  CAS  Google Scholar 

  9. Wacker DA, Miller KJ (2008) Agonists of the serotonin \(\text{5-HT }_{{\rm 2C}}\) receptor: preclinical and clinical progression in multiple diseases. Curr Opin Drug Dis Dev 11:438–445

    CAS  Google Scholar 

  10. Nichols DE (2004) Hallucinogens. Pharmacol Ther 101:131–181. doi:10.1016/j.pharmthera.2003.11.002

    Article  CAS  PubMed  Google Scholar 

  11. Villalon CM, Centurion D (2007) Cardiovascular responses produced by 5-hydroxytryptamine: a pharmacological update on receptors/mechanisms involved and therapeutic implications. Naunyn-Schmiedeberg’s Arch Pharmacol 376:45–63. doi:10.1007/s00210-007-0179-1

    Article  CAS  Google Scholar 

  12. Roth BL (2007) Drugs and valvular heart disease. N Engl J Med 356:6–9. doi:10.1056/NEJMp068265

    Article  CAS  PubMed  Google Scholar 

  13. Sargent PA, Sharpley AL, Williams C, Goodall EM, Cowen PJ (1997) \(\text{5-HT }_{{\rm 2C}}\) receptor activation decreases appetite and body weight in obese subjects. Psychopharmacology 133:309–312. doi:10.1007/s002130050407

    Article  CAS  PubMed  Google Scholar 

  14. Vickers SP, Easton N, Webster LJ, Wyatt A, Bickerdike MJ, Dourish CT, Kennet GA (2003) Oral administration of the 5-HT2C receptor agonist, mCPP, reduces body weight gain in rats over 28 days as a result of maintained hypophagia. Psychopharmacology 167:274–280. doi:10.1007/s00213-002-1378-6

    CAS  PubMed  Google Scholar 

  15. Rothman RB, Ayestas MA, Dersch CM, Baumann MH (1999) Aminorex, fenfluramine, and chlorphentermine are serotonin transporter substrates implications for primary pulmonary hypertension. Circulation 100:869–875. doi:10.1161/01.CIR.100.8.869

    Article  CAS  PubMed  Google Scholar 

  16. Wang Y, Serradell N, Bolos J (2007) Lorcaserin hydrochloride: \(\text{5-HT }_{{\rm 2C}}\) receptor agonist anti-obesity drug. Drug Futur 32:766–770. doi:10.1358/dof.2007.032.09.1135518

    Article  CAS  Google Scholar 

  17. Thomsen WJ, Grottick AJ, Menzaghi F, Reyes-Saldana H, Espitia S, Yuskin D, Whelan K, Martin M, Morgan M, Chen W, Al-Sham H, Smith B, Chalmers D, Behan D (2008) Lorcaserin, a novel selective human 5-hydroxytryptamine2C agonist: in vitro and in vivo pharmacological characterization. J Pharmacol Exp Ther 325:577–587. doi:10.1124/jpet.107.133348

    Article  CAS  PubMed  Google Scholar 

  18. Ramamoorthy PS, Beyer C, Brennan J, Dunlop J, Gove S, Grauer S, Harrison BL, Lin Q, Malberg J, Marquis K, Mazandarani H, Piesla M, Pulicicchio C, Rosenzwieg-Lipson S, Sabb A-M, Schechter L, Stack G, Zhang J (2006) Discovery of SCA-136, a novel \(\text{5-HT }_{{\rm 2C}}\) agonist, for the treatment of schizophrenia. Abstracts of Papers, \(231^{\rm st}\) ACS National Meeting, Atlanta, GA, United States, March \(26-30^{\rm th}\) MEDI-021

  19. Bishop MJ, Nilsson BM (2003) New \(\text{5-HT }_{\rm 2c}\) receptor agonists. Expert Opin Ther Pat 13:1691–1705. doi:10.1517/13543776.13.11.1691

    Article  CAS  Google Scholar 

  20. Lacivita E, Leopoldo M (2006) Selective agents for serotonin 2C (\(\text{5-HT }_{{\rm 2C}})\) receptor. Curr Top Med Chem 6:1927–1970. doi:10.2174/156802606778522168

    Article  CAS  PubMed  Google Scholar 

  21. Rubin R (2012) New Diet Drug Lorcaserin Wins Vote from FDA Panel. WebMD Health News. http://www.webmd.com/diet/news/20120510/new-diet-drug-lorcaserin-wins-vote-from-fda-panel. Accessed15 Aug 2014

  22. Smith BM, Smith JM, Tsai JH, Schultz JA, Gilson CA, Estrada SA, Chen RR, Park DM, Prieto EB, Gallardo CS, Sengupta D, Dosa PI, Covel JA, Ren A, Webb RR, Beeley NRA, Martin M, Morgan M, Espitia S, Saldana RH, Bjenning C, Whelan KT, Grottick AJ, Menzaghi F, Thomsen WJ (2008) Discovery and structure-activity relationship of (1R)-8-Chloro-2,3,4,5-tetrahydro-1-methyl-1H-3-benzazepine (Lorcaserin), a selective serotonin \(\text{5-HT }_{{\rm 2C}}\) receptor agonist for the treatment of obesity. J Med Chem 51:305–313. doi:10.1021/jm0709034

    Article  CAS  PubMed  Google Scholar 

  23. Kim J, Kim H, Park SB (2014) Privileged structures: efficient chemical “Navigators” toward unexplored biologically relevant chemical spaces. J Am Chem Soc 136:14629–14638. doi:10.1021/ja508343a

    Article  CAS  PubMed  Google Scholar 

  24. Kyoichi M, Itsuro S, Yutaka K, Hidetaka K, Keizo S, Fumikazu W (2002) Preparation of benzazepine derivatives as \(\text{5-HT }_{{\rm 2C}}\) receptor agonists. PCT Int Appl WO 2002074746 (A1)

  25. Samanin R, Garattini S (1993) Neurochemical mechanism of action of anorectic drugs. Pharmacol Toxicol 73:63–68

    Article  CAS  PubMed  Google Scholar 

  26. Fiorella D, Rabin RA, Winte JC (1995) The role of the \(\text{5-HT }_{{\rm 2A}}\) and \(\text{5-HT }_{{\rm 2C}}\) receptors in the stimulus effects of hallucinogenic drugs. I: Antagonist correlation analysis. Psychopharmacology 121:347–356. doi:10.1007/BF02246074

    Article  CAS  PubMed  Google Scholar 

  27. Stewart SG, Heath CH, Ghisalberti EL (2009) Domino or single-step Tsuji-Trost/Heck reactions and their application in the synthesis of 3-Benzazepines and Azepino[4,5-b]indole ring systems. Eur J Org Chem 1934–1943: doi:10.1002/ejoc.200900028

  28. Tietze LF, Schimpf R (1993) Efficient synthesis of 2,3,4,5-Tetrahydro-1H-3-benzazepines by intramolecular heck reaction. Synthesis 9:876–880. doi:10.1055/s-1993-25961

    Article  Google Scholar 

  29. Smith BM, Smith JM, Tsai JH, Schultz JA, Gilson CA, Estrada SA, Chen RR, Park DM, Prieto EB, Gallardo CS, Sengupta D, Thomsen WJ, Saldana HR, Whelan KT, Menzaghi F, Webb RR, Beeley NR (2005) A Discovery and SAR of new benzazepines as potent and selective \(\text{5-HT }_({{\rm 2C}})\) receptor agonists for the treatment of obesity. Bioorg Med Chem Lett 15:1467–1470. doi:10.1016/j.bmcl.2004.12.080

    Article  CAS  PubMed  Google Scholar 

  30. Pearson RG, Songstad J (1967) Application of the principle of hard and soft acids and bases to organic chemistry. J Am Chem Soc 89:1827–1836. doi:10.1021/ja00984a014

    Article  CAS  Google Scholar 

  31. Yonemitsu O, Tokuyama T, Chaykovsky M, Witkop B (1968) Photocyclizations of tyrosines, tyramines, catechol amines, and normescaline. J Am Chem Soc 90:776–784. doi:10.1021/ja01005a040

    Article  CAS  PubMed  Google Scholar 

  32. Deady LW, Pirzada NH, Topsom RD (1973) Synthesis of some tetrahydro-2- and 3-benzazepines, and of hexahydro-3-benzazocine. J Chem Soc Perkin Trans 1:782–783. doi:10.1039/p19730000782

    Article  Google Scholar 

  33. Orito K, Matsuzaki T (1980) Benzolactams–I: Alkylation of 1,2,4,5-tetrahydro-3-methyl-3H-3-benzazepin-2-one with sodium hydride and alkyl halide. Tetrahedron 36:1017–1021. doi:10.1016/0040-4020(80)80055-X

    Article  CAS  Google Scholar 

  34. Enguix MJ, Sánchez L, Villazón M, Brea J, Tristán H, Caruncho HJ, Cadavid MI, Loza MI (2003) Differential regulation of rat peripheral \(\text{5-HT }_{{\rm 2A}}\) and \(\text{5-HT }_{{\rm 2B}}\) receptor systems: influence of drug treatment Naunyn-Schmiedeberg’s. Arch Pharmacol 368:79–90. doi:10.1007/s00210-003-0775-7

    Article  CAS  Google Scholar 

  35. Cryan JF, Lucki I (2000) Antidepressant-like behavioral effects mediated by 5-Hydroxytryptamine (2C) receptors. J Pharmacol Exp Ther 295:1120–1126

    CAS  PubMed  Google Scholar 

  36. SiteMap version 2.3 (2009) Schrödinger. LLC, New York, NY

  37. Zuo Z, Chen G, Luo X, Puah C, Zhu W, Chen K, Jiang H (2007) Pharmacophore-directed homology modeling and molecular dynamics simulation of G protein-coupled receptor: study of possible binding modes of \(\text{5-HT }_{{\rm 2C}}\) receptor agonists. Acta Biochim Biophys Sin 39:413–422. doi:10.1111/j.1745-7270.2007.00295.x

    Article  CAS  PubMed  Google Scholar 

  38. Glide version 5.5 (2009) Schrödinger. LLC, New York, NY

  39. Nair MD, Malik PA (1967) Preparation of 2,3,4,5-tetrahydro-3,1H-benzazepin-2-one. Indian J Chem 5:169–170

    CAS  Google Scholar 

  40. Berney D, Schuh K (1976) 1-Aralkylated tetrahydro-2-benzazepines. Part III. Synthesis from \(\beta \)-tetralones. Helvetica Chimica Acta 59:2059–2067. doi:10.1002/hlca.19760590619

    Article  CAS  Google Scholar 

  41. Kulkarni SK, Singh VP, Jain NK (2001) Modified method of preparing longitudinal and horizontal rat fundal strips for bioassay. Indian J Pharmacol 33:219–220

    Google Scholar 

  42. Yadav MR, Gandhi HP, Naik PP, Giridhar R (2012) Revelation on the potency of \(\alpha \)(1) -blockers—parallel blockade of angiotensin II receptor: a new finding. Pharm Biol 50:439–442. doi:10.3109/13880209.2011.611144

    Article  CAS  PubMed  Google Scholar 

  43. Deng J, Zhou Y, Bai M, Li H, Li L (2010) Anxiolytic and sedative activities of Passiflora edulis f. flavicarpa. J Ethnopharmacol 128:148–153. doi:10.1016/j.jep.2009.12.043

    Article  PubMed  Google Scholar 

  44. Steru L, Chermat R, Thierry B, Simon P (1985) A new method for screening antidepressants in mice. Psychopharmacology 85:367–370. doi:10.1007/BF00428203

    Article  CAS  PubMed  Google Scholar 

  45. Liang Y, Shaw AM, Boules M, Briody S, Robinson J, Oliveros A, Blazar E, Williams K, Zhang Y, Carlier PR, Richelson E (2008) Antidepressant-like pharmacological profile of a novel triple reuptake inhibitor, (1S,2S)-3-(methylamino)-2-(naphthalen-2-yl)-1-phenylpropan-1-ol (PRC200-SS). J Pharmacol Exp Ther 327:573–583. doi:10.1124/jpet.108.143610

    Article  CAS  PubMed  Google Scholar 

  46. Forbes IT, Ham P, Booth DH, Martin RT, Thompson M, Baxter GS, Blackburn TP, Glen A, Kennett GA, Wood MD (1995) 5-Methyl-1-(3-pyridylcarbamoyl)-1,2,3,5-tetrahydropyrrolo[2,3-f]indole: a novel \(\text{5-HT }_{{\rm 2C}}/\text{5-HT }_{{\rm 2B}}\) receptor antagonist with improved affinity, selectivity, and oral activity. J Med Chem 38:2524–2530. doi:10.1021/jm00014a004

    Article  CAS  PubMed  Google Scholar 

  47. Kennett GA, Wood MD, Bright F, Cilia J, Piper DC, Gager T, Thomas D, Baxter GS, Forbes IT, Ham P, Blackburn TP (1996) In vitro and in vivo profile of SB206553, a potent \(\text{5-HT }_{{\rm 2C}}/\text{5-HT }_{{\rm 2B}}\) receptor antagonist with anxiolytic-like properties. Br J Pharmacol 117:427–434. doi:10.1111/j.1476-5381.1996.tb15208.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Millan MJ, Peglion JL, Lavielle G, Perrin-Monneyron S (1997) \(\text{5-HT }_{{\rm 2C}}\) receptors mediate penile erections in rats: actions of novel and selective agonists and antagonists. Eur J Pharm 325:9–12. doi:10.1016/S0014-2999(97)89962-1

  49. Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Crystal structure of the human \(\beta \)2 adrenergic G-protein-coupled receptor. Nature 450:383–388. doi:10.1038/nature06325

    Article  CAS  PubMed  Google Scholar 

  50. Marti-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol 29:291–325. doi:10.1146/annurev.biophys.29.1.291

    Article  CAS  Google Scholar 

  51. Seo YS, Yoo A, Jung J, Sung SK, Yang DR, Kim WT, Lee W (2004) The active site and substrate-binding mode of 1- minocyclopropane- 1-carboxylate oxidase determined by site-directed mutagenesis and comparative modelling studies. Biochem J 380:339–346. doi:10.1042/BJ20031762

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. LigPrep Version 2.3 (2009) Schrödinger. LLC, New York, NY

Download references

Acknowledgments

The authors thank the Director, SAIF-Division, Panjab University, Chandigarh for their help. Navnit Prajapati, Anshuman Sinha, and Ashish M. Kanhed thank UGC, New Delhi for BSR-RFSMS-fellowship (No.F.4-1/2006 BSR/7-129/2007 BSR).

Conflict of interest

The author(s) confirm that there is no conflict of interest on the contents of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mange Ram Yadav.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 5876 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajapati, N., Giridhar, R., Sinha, A. et al. Regioselective alkylation of 1,3,4,5-tetrahydrobenzo[d]azepin-2-one and biological evaluation of the resulting alkylated products as potentially selective \(\hbox {5-HT}_{\mathrm{2C}}\) agonists. Mol Divers 19, 653–667 (2015). https://doi.org/10.1007/s11030-015-9600-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-015-9600-8

Keywords

Navigation