Advertisement

Molecular Diversity

, Volume 20, Issue 1, pp 111–152 | Cite as

The molecular diversity scope of 1,3-indandione in organic synthesis

  • Shima Asadi
  • Ghodsi Mohammadi Ziarani
Comprehensive review

Abstract

Indandione is an important starting material that has drawn great attention in various organic transformations because of its attributes, such as low cost, easy to handle and eco-friendliness generally affording the corresponding products in excellent yields. In this review, we summarize recent data describing the most important MCRs reactions in which one of the starting materials is indandione. This review will also present two-, three-, four-, and five-component and one-pot reactions for the functionalization of indandione with the to increase awareness on the versatility of using this compound among organic chemists.

Keywords

Indandione Organic synthesis  Multicomponent reaction MCRs Cylcization  Functionalization 

Notes

Acknowledgments

We gratefully acknowledge the financial support from the Research Council of Alzahra University.

References

  1. 1.
    Zhang J, El-Shabrawy ARO, El-Shanawany MA, Schiff PL, Slatkin DJ (1987) New azafluorene alkaloids from Oxandra xylopioides. J Nat Prod 50:800–806. doi: 10.1021/np50053a005 CrossRefGoogle Scholar
  2. 2.
    Frédérick R, Dumont W, Ooms F, Aschenbach L, Van der Schyf CJ, Castagnoli N, Wouters J, Krief A (2006) Synthesis, structural reassignment, and biological activity of type B MAO inhibitors based on the 5H-Indeno[1,2-c]pyridazin-5-one core. J Med Chem 49:3743–3747. doi: 10.1021/jm051091j CrossRefPubMedGoogle Scholar
  3. 3.
    Nugiel DA, Etzkorn A-M, Vidwans A, Benfield PA, Boisclair M, Burton CR, Cox S, Czerniak PM, Doleniak D, Seitz SP (2001) Indenopyrazoles as novel cyclin dependent kinase (CDK) inhibitors. J Med Chem 44:1334–1336. doi: 10.1021/jm0100032 CrossRefPubMedGoogle Scholar
  4. 4.
    Deady LW, Desneves J, Kaye AJ, Finlay GJ, Baguley BC, Denny WA (2000) Synthesis and antitumor activity of some indeno[1,2-b]quinoline-based bis carboxamides. Bioorg Med Chem 8:977–984. doi: 10.1016/S0968-0896(00)00039-0 CrossRefPubMedGoogle Scholar
  5. 5.
    Yamato M, Takeuchi Y, Hashigaki K, Ikeda Y, Chang MR, Takeuchi K, Matsushima M, Tsuruo T, Tashiro T (1989) Synthesis and antitumor activity of fused tetracyclic quinoline derivatives. 1. J Med Chem 32:1295–1300. doi: 10.1021/jm00126a025 CrossRefPubMedGoogle Scholar
  6. 6.
    Rampa A, Bisi A, Belluti F, Gobbi S, Valenti P, Andrisano V, Cavrini V, Cavalli A, Recanatini M (2000) Acetylcholinesterase inhibitors for potential use in Alzheimer’s disease: molecular modeling, synthesis and kinetic evaluation of 11H-indeno-[1,2-b]-quinolin-10-ylamine derivatives. Bioorg Med Chem 8:497–506. doi: 10.1016/S0968-0896(99)00306-5 CrossRefPubMedGoogle Scholar
  7. 7.
    Brooks JR, Berman C, Hichens M, Primka RL, Reynolds GF, Rasmusson GH (1982) Biological activities of a new steroidal inhibitor of \(\delta 4\)-\(5\alpha \)-reductase. Proc Soc Exp Bio Med 169:67–73. doi: 10.3181/00379727-169-41309 CrossRefGoogle Scholar
  8. 8.
    Venugopalan B, Bapat C, Pinto Desouza E, Desouza N (1992) Synthesis of 2- and 3-(4-chlorophenyl)-4-hydroxy-7-(4-trifluoromethylphenyl)-5, 6,7,8-tetrahydroquinolin-5-one and 5,10-dihydro-11H-8-chloroindeno[1,2-b]quinolin-10,11-diones as antimalarials. Indian J Chem Sect B Org Chem Incl Med Chem 31:35–38Google Scholar
  9. 9.
    Nagarajan M, Morrell A, Fort BC, Meckley MR, Antony S, Kohlhagen G, Pommier Y, Cushman M (2004) Synthesis and anticancer activity of simplified indenoisoquinoline topoisomerase I inhibitors lacking substituents on the aromatic rings. J Med Chem 47:5651–5661. doi: 10.1021/jm040025z CrossRefPubMedGoogle Scholar
  10. 10.
    Shen Q, Wang L, Yu J, Liu M, Qiu J, Fang L, Guo F, Tang J (2012) Synthesis of quinolines via Friedländer reaction in water and under catalyst-free conditions. Synthesis 44:389–392. doi: 10.1055/s-0031-1289657 CrossRefGoogle Scholar
  11. 11.
    Shirini F, Akbari Dadamahaleh S, Mohammad Khah A (2013) Rice husk ash supported \(\text{ FeCl2 }\cdot \,\text{2H2O } \): a mild and highly efficient heterogeneous catalyst for the synthesis of polysubstituted quinolines by Friedländer heteroannulation. Chin J Catal 34:2200–2208. doi: 10.1016/S1872-2067(12)60684-6 CrossRefGoogle Scholar
  12. 12.
    Sartori G, Bigi F, Maggi R, Baraldi D, Casnati G (1992) Acylation of aroyl chlorides via a template Friedel–Crafts process: synthesis of indan-1,3-diones. J Chem Soc Perkin Trans 1:2985–2988. doi: 10.1039/P19920002985 CrossRefGoogle Scholar
  13. 13.
    Das U, Tsai YL, Lin W (2013) An efficient organocatalytic enantioselective synthesis of spironitrocyclopropanes. Org Biomol Chem 11:44–47. doi: 10.1039/C2OB26943K CrossRefPubMedGoogle Scholar
  14. 14.
    Rueping M, Parra A, Uria U, Besselievre F, Merino E (2010) Catalytic asymmetric domino Michael addition–alkylation reaction: enantioselective synthesis of dihydrofurans. Org Lett 12:5680–5683. doi: 10.1021/ol102499r CrossRefPubMedGoogle Scholar
  15. 15.
    Dou X, Lu Y (2012) Diastereodivergent synthesis of 3-spirocyclopropyl-2-oxindoles through direct enantioselective cyclopropanation of oxindoles. Chem Eur J 18:8315–8319. doi: 10.1002/chem.201200655 CrossRefPubMedGoogle Scholar
  16. 16.
    El-Zohry MF, Elossaily YA, Mohamed TA, Hussein EM (2008) Synthesis and reactions of some new spiro indeno[1,2-b] pyran-4,3\(^{\prime }\)-indolines. Heterocycles 75:955–963. doi: 10.3987/COM-07-11277 CrossRefGoogle Scholar
  17. 17.
    Raoof J-B, Kiani A, Ojani R, Khalilzadeh MA (2007) Anodic oxidation of catechols in the presence of 1,3-indandione. A green electrosynthetic approach to new catechol derivatives. Bull Chem Soc Jpn 80:1573–1576. doi: 10.1246/bcsj.80.1573 CrossRefGoogle Scholar
  18. 18.
    Tatarets AL, Fedyunyaeva IA, Terpetschnig E, Patsenker LD (2005) Synthesis of novel squaraine dyes and their intermediates. Dyes Pigment 64:125–134. doi: 10.1016/j.dyepig.2004.05.003 CrossRefGoogle Scholar
  19. 19.
    Berezina G, Shaposhnikov G (2011) Synthesis of carbocycles with the fragments of phenylenediamines and their copper(II), cobalt(II), and zinc(II) complexes. Rus J Gen Chem 81:2294–2299. doi: 10.1134/s1070363211110120 CrossRefGoogle Scholar
  20. 20.
    Yavari I, Mirzaei A, Moradi L, Hosseini N (2008) Stereoselective synthesis of dialkyl 3-spiroindanedione-1,2,3,3a-tetrahydropyrrolo[1,2-a]quinoline-1,2-dicarboxylates. Tetrahedron Lett 49:2355–2358. doi: 10.1016/j.tetlet.2008.02.075 CrossRefGoogle Scholar
  21. 21.
    Yavari I, Maghsoodlou MT (1998) A facile synthesis of stable 1,4-diionic phosphorus compounds. Tetrahedron Lett 39:4579–4580. doi: 10.1016/S0040-4039(98)00811-9 CrossRefGoogle Scholar
  22. 22.
    Yavari I, Islami MR, Bijanzadeh HR (1999) A facile synthesis of diastereoisomeric 1,4-diionic organophosphorus compounds. Tetrahedron 55:5547–5554. doi: 10.1016/S0040-4020(99)00220-3 CrossRefGoogle Scholar
  23. 23.
    Habibi A, Valizadeh Y, Alizadeh A, Amiri Rudbari H, Mollica Nardo V (2014) Regioselective synthesis of novel ketene dithioacetals. J Sulfur Chem 35:362–372. doi: 10.1080/17415993.2013.879871 CrossRefGoogle Scholar
  24. 24.
    Baldwin JE, Thomas RC, Kruse LI, Silberman L (1977) Rules for ring closure: ring formation by conjugate addition of oxygen nucleophiles. J Org Chem 42:3846–3852. doi: 10.1021/jo00444a011 CrossRefGoogle Scholar
  25. 25.
    Sarkar R, Mukhopadhyay C (2014) L-Proline catalyzed expeditious multicomponent protocol for the synthesis of fused N-substituted-2-pyridone derivatives in aqueous medium. Tetrahedron Lett 55:2618–2624. doi: 10.1016/j.tetlet.2014.02.123 CrossRefGoogle Scholar
  26. 26.
    Kazemi B, Javanshir S, Maleki A, Safari M, Khavasi HR (2012) An efficient synthesis of 4H-chromene, 4H-pyran, and oxepine derivatives via one-pot three-component tandem reactions. Tetrahedron Lett 53:6977–6981. doi: 10.1016/j.tetlet.2012.10.046 CrossRefGoogle Scholar
  27. 27.
    Tu S, Jiang B, Jiang H, Zhang Y, Jia R, Zhang J, Shao Q, Li C, Zhou D, Cao L (2007) A novel three-component reaction for the synthesis of new 4-azafluorenone derivatives. Tetrahedron 63:5406–5414. doi: 10.1016/j.tet.2007.04.053 CrossRefGoogle Scholar
  28. 28.
    Ziyaadini M, Maghsoodlou MT, Hazeri N, Habibi-Khorassani SM (2013) Synthesis of new stable phosphorus ylides and 1,4-diionic organophosphorus compound from a reaction between hexamethyl phosphorous triamide and dimethyl acetylenedicarboxylate in the presence of CH-acids. Heteroat Chem 24:84–89. doi: 10.1002/hc.21067 CrossRefGoogle Scholar
  29. 29.
    Dai B, Song L, Wang P, Yi H, Cao W, Jin G, Zhu S, Shao M (2009) Unexpected formation of fluorine-containing multiply substituted dispirocyclohexanes from the reaction of ethyl-4,4,4-trifluoro-1,3-dioxobutanoate and 2-arylideneindane-1,3-diones. Synlett 11:1842–1846. doi: 10.1055/s-0029-1217361 Google Scholar
  30. 30.
    Fujita M, Egawa H, Miyamoto T, Nakano J, Matsumoto J (1996) Pyridione carboxylic acids as antibacterial agents. Part 18: pyrroloquinolines and pyrazoloquinolones as potential antibacterial agents. Synthesis and antibacterial activity. Eur J Med Chem 31:981–988. doi: 10.1016/S0223-5234(97)86177-6 CrossRefGoogle Scholar
  31. 31.
    Wathen MW, Wathen LK (2004) Method using quinolinecarboxamides and other heterocyclic compounds for preventing or treating atherosclerosis or restenosis. Chem Abstr 140:247064Google Scholar
  32. 32.
    Ajami AM (2008) Preparation of (fused) imidazoacridines for treating FLT3-mediated disorders. Chem Abstr 148:239202Google Scholar
  33. 33.
    Ajami AM (2008) Compounds for treating inflammatory disorders, demyelinating disorders and cancers. Chem Abstr 148:529475Google Scholar
  34. 34.
    Shi F, Zhang S, Wu S-S, Gao Y, Tu S-J (2011) A diversity-oriented synthesis of pyrazolo[4,3-f]quinoline derivatives with potential bioactivities via microwave-assisted multi-component reactions. Mol Divers 15:497–505. doi: 10.1007/s11030-010-9272-3 CrossRefPubMedGoogle Scholar
  35. 35.
    Shi D-Q, Ni S-N, Yang F, Shi J-W, Dou G-L, Li X-Y, Wang X-S, Ji S-J (2008) An efficient synthesis of pyrimido[4,5-b]quinoline and \({\rm indeno}[2^\prime,1^\prime :5,6]{\rm pyrido}[2,3-d]{\rm pyrimidine}\) derivatives via multicomponent reactions in ionic liquid. J Heterocycl Chem 45:693–702. doi: 10.1002/jhet.5570450310 CrossRefGoogle Scholar
  36. 36.
    Shi F, Zhang Y, Tu S-J, Zhou D-X, Li C-M, Shao Q-Q, Cao L-J (2008) A green approach to the synthesis of biologically important indeno[2,1-e]pyrazolo[5,4-b]pyridines via microwave-assisted multi-component reactions in water. Chin J Chem 26:1262–1266. doi: 10.1002/cjoc.200890229 CrossRefGoogle Scholar
  37. 37.
    Quiroga J, Trilleras J, Pantoja D, Abonía R, Insuasty B, Nogueras M, Cobo J (2010) Microwave-assisted synthesis of pyrazolo[3,4-b]pyridine-spirocycloalkanediones by three-component reaction of 5-aminopyrazole derivatives, paraformaldehyde and cyclic \(\beta \)-diketones. Tetrahedron Lett 51:4717–4719. doi: 10.1016/j.tetlet.2010.07.009 CrossRefGoogle Scholar
  38. 38.
    Ramachar DB, Chowdari NS, Barbas CF (2003) The first organocatalytic hetero-domino Knoevenagel–Diels–Alder–Epimerization reactions: diastereoselective synthesis of highly substituted spiro[cyclohexane-1,\(2^\prime \)-indan]-\(1^\prime,3^\prime \),4-triones. Synlett 12:1910–1914. doi: 10.1055/s-2003-41486 Google Scholar
  39. 39.
    Ramachary DB, Anebouselvy K, Chowdari NS, Barbas CF (2004) Direct organocatalytic asymmetric heterodomino reactions: the Knoevenagel/Diels-Alder/Epimerization sequence for the highly diastereoselective synthesis of symmetrical and nonsymmetrical synthons of benzoannelated centropolyquinanes. J Org Chem 69:5838–5849. doi: 10.1021/jo049581r CrossRefPubMedGoogle Scholar
  40. 40.
    Agarwal A, Chauhan PMS (2005) Solid supported synthesis of structurally diverse dihydropyrido[2,3-d]pyrimidines using microwave irradiation. Tetrahedron Lett 46:1345–1348. doi: 10.1016/j.tetlet.2004.12.109 CrossRefGoogle Scholar
  41. 41.
    Abdolmohammadi S, Balalaie S, Barari M, Rominger F (2013) Three-component green reaction of arylaldehydes, 6-amino-1,3-dimethyluracil and active methylene compounds catalyzed by zr(hso4)4 under solvent-free conditions. Comb Chem High Throughput Screen 16:150–159. doi: 10.2174/138620713804806319 PubMedGoogle Scholar
  42. 42.
    Evdokimov NM, Van slambrouck S, Heffeter P, Tu L, Le Calvé B, Lamoral-Theys D, Hooten CJ, Uglinskii PY, Rogelj S, Kiss R, Steelant WFA, Berger W, Yang JJ, Bologa CG, Kornienko A, Magedov IV (2011) Structural simplification of bioactive natural products with multicomponent synthesis. 3. Fused uracil-containing heterocycles as novel topoisomerase-targeting agents. J Med Chem 54:2012–2021. doi: 10.1021/jm1009428 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Verma GK, Raghuvanshi K, Kumar R, Singh MS (2012) An efficient one-pot three-component synthesis of functionalized pyrimido[4,5-b]quinolines and indeno fused pyrido[2,3-d]pyrimidines in water. Tetrahedron Lett 53:399–402. doi: 10.1016/j.tetlet.2011.11.047 CrossRefGoogle Scholar
  44. 44.
    Khurana JM, Chaudhary A, Nand B, Lumb A (2012) Aqua mediated indium(III) chloride catalyzed synthesis of fused pyrimidines and pyrazoles. Tetrahedron Lett 53:3018–3022. doi: 10.1016/j.tetlet.2012.04.001 CrossRefGoogle Scholar
  45. 45.
    Tanifum EA, Kots AY, Choi B-K, Murad F, Gilbertson SR (2009) Novel pyridopyrimidine derivatives as inhibitors of stable toxin a (STa) induced cGMP synthesis. Bioorg Med Chem Lett 19:3067–3071. doi: 10.1016/j.bmcl.2009.04.024 CrossRefPubMedGoogle Scholar
  46. 46.
    Hassan N, Hegab M, Hashem A, Abdel-Motti F, Hebah S, Abdel-Megeid F (2007) Three-component, one-pot synthesis of pyrimido [4, 5-b]-quinoline and pyrido [2, 3-d] pyrimidine derivatives. J Heterocycl Chem 44:775–782. doi: 10.1002/jhet.5570440404 CrossRefGoogle Scholar
  47. 47.
    Kumar A, Raghuvanshi K, Verma RK, Singh MS (2010) Application of cyclic-1,3-diketones in domino and multicomponent reactions: facile route to highly functionalized chromeno[2,3-\(d\)]pyrimidinones and diazabenzo[\(b\)]fluorenones under solvent-free conditions. Tetrahedron Lett 51:5933–5936. doi: 10.1016/j.tetlet.2010.09.017 CrossRefGoogle Scholar
  48. 48.
    Nemati F, Heravi MM, Saeedi Rad R (2012) \({\rm Nano\text{- }Fe}_{3}{\rm O}_{4}\) encapsulated-silica particles bearing sulfonic acid groups as a magnetically separable catalyst for highly efficient knoevenagel condensation and michael addition reactions of aromatic aldehydes with 1,3-cyclic diketones. Chin J Catal 33:1825–1831. doi: 10.1016/S1872-2067(11)60455-5 CrossRefGoogle Scholar
  49. 49.
    Wang G-W, Gao J (2009) Selective formation of spiro dihydrofurans and cyclopropanes through unexpected reaction of aldehydes with 1,3-dicarbonyl compounds. Org Lett 11:2385–2388. doi: 10.1021/ol900451d CrossRefPubMedGoogle Scholar
  50. 50.
    Anzini M, Cappelli A, Vomero S, Cagnotto A, Skorupska M (1994) 6-(1-Piperazinyl)-7H-indeno(2,1-c)quinoline derivatives with high affinity and selectivity for 5-HT3 serotonin sites. ChemInform 25: doi: 10.1002/chin.199414191
  51. 51.
    Quraishi M, Thakur V, Dhawan S (1989) Synthesis of 6-(4’-chlorophenyl)-7h-indeno [2,1-\(c\)] quinolines and their biological-activity, vol 28. Council scientific industrial research publ & info directorate, New Delhi 110012, IndiaGoogle Scholar
  52. 52.
    Tu S-J, Jiang B, Jia R-H, Zhang J-Y, Zhang Y, Yao C-S, Shi F (2006) An efficient one-pot, three-component synthesis of indeno[1,2-b]quinoline-9,11(6H,10H)-dione, acridine-1,8(2H,5H)-dione and quinoline-3-carbonitrile derivatives from enaminones. Org Biomol Chem 4:3664–3668. doi: 10.1039/b607575d CrossRefPubMedGoogle Scholar
  53. 53.
    Tu S-J, Jiang B, Zhang J-Y, Jia R-H, Zhang Y, Yao C-S (2006) Efficient and direct synthesis of poly-substituted indeno[1,2-b]quinolines assisted by p-toluene sulfonic acid using high-temperature water and microwave heating via one-pot, three-component reaction. Org Biomol Chem 4:3980–3985. doi: 10.1039/b611462h CrossRefPubMedGoogle Scholar
  54. 54.
    Wu LQ, Li WL, Yan FL (2010) Sulfamic acid-catalyzed synthesis of 13-aryl-indeno[1,2-b]-naphtha[1,2-e]pyran-12(13H)-ones under solvent-free conditions. J Heterocycl Chem 47:1246–1249. doi: 10.1002/jhet.445 CrossRefGoogle Scholar
  55. 55.
    Shaterian HR, Mohammadnia M, Moradi F (2012) Acidic ionic liquids catalyzed three-component synthesis of 12-aryl-12H-indeno[1,2-b]naphtho[3,2-e]pyran-5,11,13-trione and 13-aryl-indeno[1,2-b]naphtha[1,2-e]pyran-12(13H)-one derivatives. J Mol Liq 172:88–92. doi: 10.1016/j.molliq.2012.05.018 CrossRefGoogle Scholar
  56. 56.
    Wu L-Q, Yang L-M, Wang X, Yan F-L (2010) Silica chloride catalysed one-pot synthesis of 13-aryl-indeno [1, 2-b] naphtha [1, 2-e] pyran-12 (13H)-ones under solvent-free conditions. J Chin Chem Soc 57:738–741. doi: 10.1002/jccs.201000102 CrossRefGoogle Scholar
  57. 57.
    Wang S, Ma N, Zhang G, Shi F, Jiang B, Lu H, Gao Y, Tu S (2010) An efficient and clean synthesis of indeno[1,2-b]pyrazolo[4,3-e] pyridin-5(1H)-one derivatives under microwave irradiation in water. J Heterocycl Chem 47:1283–1286. doi: 10.1002/jhet.468 CrossRefGoogle Scholar
  58. 58.
    Shi D-Q, Yang F, Ni S-N (2009) A facile synthesis of furo[3,4-e]pyrazolo[3,4-b]pyridine-5(7H)-one derivatives via three-component reaction in ionic liquid without any catalyst. J Heterocycl Chem 46:469–476. doi: 10.1002/jhet.103 CrossRefGoogle Scholar
  59. 59.
    Manpadi M, Uglinskii PY, Rastogi SK, Cotter KM, Wong Y-SC, Anderson LA, Ortega AJ, Van slambrouck S, Steelant WFA, Rogelj S, Tongwa P, Antipin MY, Magedov IV, Kornienko A (2007) Three-component synthesis and anticancer evaluation of polycyclic indenopyridines lead to the discovery of a novel indenoheterocycle with potent apoptosis inducing properties. Org Biomol Chem 5:3865–3872. doi: 10.1039/b713820b CrossRefPubMedGoogle Scholar
  60. 60.
    Mizuno N, Misono M (1998) Heterogeneous catalysis. Chem Rev 98:199–218. doi: 10.1021/cr960401q CrossRefPubMedGoogle Scholar
  61. 61.
    Romanelli GP, Baronetti G, Thomas HJ, Autino JC (2002) Efficient method for tetrahydropyranylation/depyranylation of phenols and alcohols using a solid acid catalyst with Wells-Dawson structure. Tetrahedron Lett 43:7589–7591. doi: 10.1016/S0040-4039(02)01822-1 CrossRefGoogle Scholar
  62. 62.
    Romanelli GP, Thomas HJ, Baronetti GT, Autino JC (2003) Solvent-free catalytic preparation of 1,1-diacetates from aldehydes using a Wells–Dawson acid \((\text{ H6P2W18O62 }\cdot \text{24H2O })\). Tetrahedron Lett 44:1301–1303. doi: 10.1016/S0040-4039(02)02817-4 CrossRefGoogle Scholar
  63. 63.
    Baronetti G, Briand L, Sedran U, Thomas H (1998) Heteropolyacid-based catalysis. Dawson acid for MTBE synthesis in gas phase. Appl Catal A 172:265–272. doi: 10.1016/S0926-860X(98)00134-3 CrossRefGoogle Scholar
  64. 64.
    Heravi MM, Hosseini T, Derikvand F, Beheshtiha SYS, Bamoharram FF (2010) \(\text{ H6P2W18O62 }\cdot \, \text{18H2O-Catalyzed }\), Three-component, one-pot synthesis of indeno[1,2-b]quinoline-7-one derivatives. Synth Commun 40:2402–2406. doi: 10.1080/00397910903249580 CrossRefGoogle Scholar
  65. 65.
    Heravi MM, Derikvand F, Ranjbar L (2010) Sulfamic acid-catalyzed, three-component, one-pot synthesis of [1,2,4]triazolo/benzimidazolo quinazolinone derivatives. Synth Commun 40:677–685. doi: 10.1080/00397910903009489 CrossRefGoogle Scholar
  66. 66.
    Heravi M, Baghernejad B, Oskooie H (2009) Organic synthesis in water: a green protocol for the synthesis of 2-(cyclohexylamino)-3- aryl- indeno[1,2-\(b\)]furan-4-ones. Mol Divers 13:385–387. doi: 10.1007/s11030-009-9122-3 CrossRefPubMedGoogle Scholar
  67. 67.
    Insuasty B, Orozco F, Garcia A, Quiroga J, Abonia R, Nogueras M, Cobo J (2008) Microwave-assisted synthesis of new regioisomeric 6,7-dihydroindeno[1,2-e]pyrimido[4,5-b][1,4]diazepin-5(5aH)-ones. J Heterocycl Chem 45:1659–1663. doi: 10.1002/jhet.5570450616 CrossRefGoogle Scholar
  68. 68.
    Banothu J, Basavoju S, Bavantula R (2014) Pyridinium ylide assisted highly stereoselectiveone-pot synthesis of trans-2-(4-chlorobenzoyl)-3-aryl-spiro[cyclopropane-1, \(2^\prime \)-inden]-\(1^\prime ,3^\prime \)-diones and their antimicrobial and nematicidal activities. J Heterocycl Chem: In press. doi: 10.1002/jhet.2059
  69. 69.
    Majumder S, Sharma M, Bhuyan PJ (2013) Microwave promoted diastereoselective synthesis of dihydroindeno[1,2-b]furans via one-pot three-component reaction in solvent-free conditions. Tetrahedron Lett 54:6868–6870. doi: 10.1016/j.tetlet.2013.10.023 CrossRefGoogle Scholar
  70. 70.
    Li Y-L, Wang K, Zhao B, Jiang Q-S, Du B-X, Chen C-F (2014) One-pot, three-component, green procedure for efficient synthesis of allomaltol derivatives. Res Chem Intermed: 1–10. doi: 10.1007/s11164-014-1618-5
  71. 71.
    Paul S, Das AR (2012) An efficient green protocol for the synthesis of coumarin fused highly decorated indenodihydropyridyl and dihydropyridyl derivatives. Tetrahedron Lett 53:2206–2210. doi: 10.1016/j.tetlet.2012.02.077 CrossRefGoogle Scholar
  72. 72.
    Rad-Moghadam K, Youseftabar-Miri L (2012) Tetramethylguanidinium triflate: An efficient catalyst solvent for the convergent synthesis of fused spiro[1,4-dihydropyridine-oxindole] compounds. J Fluorine Chem 135:213–219. doi: 10.1016/j.jfluchem.2011.11.007 CrossRefGoogle Scholar
  73. 73.
    Asadi S, Mohammadi Ziarani G, Badiei A, Sharifi A, Amanlou M (2014) Synthesis of some new spiroindeno[1,2-b]pyrido[2,3-d]pyrimidine-5,\(3^\prime \)-indolines as new urease inhibitors. Iran J Pharm Res: AcceptedGoogle Scholar
  74. 74.
    Paul S, Das AR (2013) Dual role of the polymer supported catalyst PEG-OSO3H in aqueous reaction medium: synthesis of highly substituted structurally diversified coumarin and uracil fused spirooxindoles. Tetrahedron Lett 54:1149–1154. doi: 10.1016/j.tetlet.2012.12.079 CrossRefGoogle Scholar
  75. 75.
    Imani Shakibaei G, Feiz A, Reza Khavasi H, Abolhasani Soorki A, Bazgir A (2010) Simple three-component method for the synthesis of spiroindeno[1,2-b]pyrido[2,3-d]pyrimidine-5,\(3^\prime \)-indolines. ACS Comb Sci 13:96–99. doi: 10.1021/co1000053 CrossRefGoogle Scholar
  76. 76.
    Quiroga J, Insuasty B, Cruz S, Hernandez P, Bolaños A, Moreno R, Hormaza A, de Almeida RHS (1998) Reaction of 5-aminopyrazoles with \(\beta \)-dimethylaminopropiophenones. Synthesis of new pyrazolo[3,4-b]pyridines. J Heterocycl Chem 35:333–338. doi: 10.1002/jhet.5570350213 CrossRefGoogle Scholar
  77. 77.
    Quiroga J, Portilla J, Serrano H, Abonía R, Insuasty B, Nogueras M, Cobo J (2007) Regioselective synthesis of fused benzopyrazolo[3,4-b]quinolines under solvent-free conditions. Tetrahedron Lett 48:1987–1990. doi: 10.1016/j.tetlet.2007.01.074 CrossRefGoogle Scholar
  78. 78.
    Quiroga J, Trilleras J, Sanchez AI, Insuasty B, Abonia R, Nogueras M, Cobo J (2009) Regioselective three-component synthesis of indolylpyrazolo[3,4- b]pyridines induced by microwave and under solvent-free conditions. Lett Org Chem 6:381–383. doi: 10.2174/157017809788681284 CrossRefGoogle Scholar
  79. 79.
    Quiroga J, Cobo D, Insuasty B, Abonía R, Cruz S, Nogueras M, Cobo J (2008) Regioselective three-component synthesis of novel indeno[1,2-b]-pyrazolo[4,3-e]pyridines-fused derivatives of 4-azafluorenone alkaloid. J Heterocycl Chem 45:155–159. doi: 10.1002/jhet.5570450116 CrossRefGoogle Scholar
  80. 80.
    Imani Shakibaei G, Feiz A, Bazgir A (2011) A simple and catalyst-free three-component method for the synthesis of spiro[indenopyrazolopyridine indoline]diones and spiro[indenopyridopyrimidine indoline]triones. Comptes Rendus Chim 14:556–562. doi: 10.1016/j.crci.2010.10.001 CrossRefGoogle Scholar
  81. 81.
    Quiroga J, Portillo S, Pérez A, Gálvez J, Abonia R, Insuasty B (2011) An efficient synthesis of pyrazolo[3,4-b]pyridine-4-spiroindolinones by a three-component reaction of 5-aminopyrazoles, isatin, and cyclic \(\beta \)-diketones. Tetrahedron Lett 52:2664–2666. doi: 10.1016/j.tetlet.2011.03.067 CrossRefGoogle Scholar
  82. 82.
    Chen H, Shi D (2010) Efficient one-pot synthesis of novel spirooxindole derivatives via three-component reaction in aqueous medium. J Comb Chem 12:571–576. doi: 10.1021/cc100056p CrossRefPubMedGoogle Scholar
  83. 83.
    Ramachary DB, Reddy GB (2006) Towards organo-click reactions: development of pharmaceutical ingredients by using direct organocatalytic bio-mimetic reductions. Org Biomol Chem 4:4463–4468. doi: 10.1039/b612611a CrossRefPubMedGoogle Scholar
  84. 84.
    Ramachary DB, Kishor M, Reddy YV (2008) Development of pharmaceutical drugs, drug intermediates and ingredients by using direct organo-click reactions. Eur J Org Chem 2008:975–993. doi: 10.1002/ejoc.200701014 CrossRefGoogle Scholar
  85. 85.
    Ramachary DB, Ramakumar K, Narayana VV (2007) Organocatalytic cascade reactions based on push–pull dienamine platform: synthesis of highly substituted anilines. J Org Chem 72:1458–1463. doi: 10.1021/jo0623639 CrossRefPubMedGoogle Scholar
  86. 86.
    Ramachary DB, Kishor M (2007) Organocatalytic sequential one-pot double cascade asymmetric synthesis of Wieland–Miescher ketone analogues from a knoevenagel/hydrogenation/robinson annulation sequence: scope and applications of organocatalytic biomimetic reductions. J Org Chem 72:5056–5068. doi: 10.1021/jo070277i CrossRefPubMedGoogle Scholar
  87. 87.
    Li Y, Chen H, Shi C, Shi D, Ji S (2010) Efficient one-pot synthesis of spirooxindole derivatives catalyzed by l-proline in aqueous medium. J Comb Chem 12:231–237. doi: 10.1021/cc9001185 CrossRefPubMedGoogle Scholar
  88. 88.
    Kang T-H, Matsumoto K, Tohda M, Murakami Y, Takayama H, Kitajima M, Aimi N, Watanabe H (2002) Pteropodine and isopteropodine positively modulate the function of rat muscarinic M1 and 5-HT2 receptors expressed in Xenopus oocyte. Eur J Pharmacol 444:39–45. doi: 10.1016/S0014-2999(02)01608-4 CrossRefPubMedGoogle Scholar
  89. 89.
    Ma J, Hecht SM (2004) Javaniside, a novel DNA cleavage agent from Alangium javanicum having an unusual oxindole skeleton. Chem Commun 10:1190–1191. doi: 10.1039/b402925a CrossRefGoogle Scholar
  90. 90.
    Wang L-M, Jiao N, Qiu J, Yu J-J, Liu J-Q, Guo F-L, Liu Y (2010) Sodium stearate-catalyzed multicomponent reactions for efficient synthesis of spirooxindoles in aqueous micellar media. Tetrahedron 66:339–343. doi: 10.1016/j.tet.2009.10.091 CrossRefGoogle Scholar
  91. 91.
    Nandakumar A, Thirumurugan P, Perumal PT, Vembu P, Ponnuswamy MN, Ramesh P (2010) One-pot multicomponent synthesis and anti-microbial evaluation of \(2^\prime \)-(indol-3-yl)-2-oxospiro(indoline-3,\(4^\prime \)-pyran) derivatives. Bioorg Med Chem Lett 20:4252–4258. doi: 10.1016/j.bmcl.2010.05.025 CrossRefPubMedGoogle Scholar
  92. 92.
    Shanmugam P, Vaithiyanathan V (2008) Stereoselective synthesis of 3-spiro-\(\alpha \)-methylene-\(\gamma \)-butyrolactone oxindoles from Morita-Baylis-Hillman adducts of isatin. Tetrahedron 64:3322–3330. doi: 10.1016/j.tet.2008.02.002 CrossRefGoogle Scholar
  93. 93.
    Khorrami A, Kiani P, Bazgir A (2011) L-Proline: an efficient catalyst for the synthesis of new spirooxindoles. Monatsh Chem 142:287–295. doi: 10.1007/s00706-011-0446-1 CrossRefGoogle Scholar
  94. 94.
    Olah G, Krishnamurti R, Prakash GS (1991) Friedel-crafts alkylations, vol 3. Pergamon Press, OxfordGoogle Scholar
  95. 95.
    Ahadi S, Moafi L, Feiz A, Bazgir A (2011) Three-component synthesis of new unsymmetrical oxindoles via Friedel–Crafts type reaction. Tetrahedron 67:3954–3958. doi: 10.1016/j.tet.2011.02.054 CrossRefGoogle Scholar
  96. 96.
    Rad-Moghadam K, Youseftabar-Miri L (2010) Synthesis of novel spiro[dihydropyridine-oxindole] compounds in water. Synlett 2010:1969–1973. doi: 10.1055/s-0030-1258506 CrossRefGoogle Scholar
  97. 97.
    Liang B, Kalidindi S, Porco JA, Stephenson CRJ (2010) Multicomponent reaction discovery: three-component synthesis of spirooxindoles. Org Lett 12:572–575. doi: 10.1021/ol902764k CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Suresh Babu AR, Raghunathan R (2007) TiO2-silica mediated one pot three component 1,3-dipolar cycloaddition reaction: a facile and rapid synthesis of dispiro acenaphthenone/oxindole [indanedione/oxindole] pyrroloisoquinoline ring systems. Tetrahedron 63:8010–8016. doi: 10.1016/j.tet.2007.05.063 CrossRefGoogle Scholar
  99. 99.
    Wang XH, Yan CG (2014) Facile synthesis of spiro[indane-2,\(1^\prime \)-pyrrolo[2,1-a ]isoquinolines] via three-component reaction of isoquinolinium salts, indane-1,3-dione, and isatins. Synthesis 46:1059–1066. doi: 10.1055/s-0033-1340815 CrossRefGoogle Scholar
  100. 100.
    Asadi S, Mohammadi Ziarani G, Rahimifard M, Abolhassani Soorki A (2014) A green one-pot synthesis of spironaphthopyrano [1,2-b]indeno-7,30-indolines. Res Chem Intermed: 1–9. doi: 10.1007/s11164-014-1734-2
  101. 101.
    Akbarzadeh R, Amanpour T, Khavasi HR, Bazgir A (2012) Isocyanide-based four-component synthesis of 1,3-indandionylamidinium betaines. Tetrahedron 68:3868–3874. doi: 10.1016/j.tet.2012.03.039 CrossRefGoogle Scholar
  102. 102.
    Torres JC, Pilli RA, Vargas MD, Violante FA, Garden SJ, Pinto AC (2002) Synthesis of 1-ferrocenyl-2-aryl(heteroaryl)acetylenes and 2-ferrocenylindole derivatives via the Sonogashira–Heck–Cassar reaction. Tetrahedron 58:4487–4492. doi: 10.1016/S0040-4020(02)00394-0 CrossRefGoogle Scholar
  103. 103.
    Tu S, Jiang B, Jia R, Zhang J, Zhang Y (2007) An efficient and expeditious microwave-assisted synthesis of 4-azafluorenones via a multi-component reaction. Tetrahedron Lett 48:1369–1374. doi: 10.1016/j.tetlet.2006.12.102 CrossRefGoogle Scholar
  104. 104.
    Tapaswi PK, Mukhopadhyay C (2011) Ceric ammonium nitrate (CAN) catalyzed one-pot synthesis of fully substituted new indeno[1,2-b]pyridines at room temperature by a multi-component reaction. Arkivoc 2011:287–298CrossRefGoogle Scholar
  105. 105.
    Maia R, Do C, Fraga CAM (2010) Discovery of dual chemotherapy drug candidates designed by molecular hybridization. Curr Enzyme Inhib 6:171–182. doi: 10.2174/157340810794578515 CrossRefGoogle Scholar
  106. 106.
    Lazar C, Kluczyk A, Kiyota T, Konishi Y (2004) Drug evolution concept in drug design: 1. Hybridization method. J Med Chem 47:6973–6982. doi: 10.1021/jm049637+ CrossRefPubMedGoogle Scholar
  107. 107.
    Addla D, Bhima Sridhar B, Devi A, Kantevari S (2012) Design, synthesis and antimicrobial evaluation of novel 1-benzyl 2-butyl-4-chloroimidazole embodied 4-azafluorenones via molecular hybridization approach. Bioorg Med Chem Lett 22:7475–7480. doi: 10.1016/j.bmcl.2012.10.042 CrossRefPubMedGoogle Scholar
  108. 108.
    Heravi MM, Alinejhad H, Bakhtiari K, Daroogheha Z, Bamoharram FF, Derikvand F, Alimadadi B (2010) Facile heteropolyacid-promoted synthesis of indeno[1,2-b]quinoline-9,11(6H,10H)-dione derivatives. Synth Commun 40:2191–2200. doi: 10.1080/00397910903219591 CrossRefGoogle Scholar
  109. 109.
    Abdolmohammadi S (2013) Simple route to indeno[1,2-b]quinoline derivatives via a coupling reaction catalyzed by TiO2 nanoparticles. Chin Chem Lett 24:318–320. doi: 10.1016/j.cclet.2013.02.017 CrossRefGoogle Scholar
  110. 110.
    Shirini F, Beigbaghlou SS, Atghia SV, Mousazadeh SA-R (2013) Multi-component one-pot synthesis of unsymmetrical dihydro-5H-indeno[1,2-b]quinolines as new pH indicators. Dyes Pigment 97:19–25. doi: 10.1016/j.dyepig.2012.11.002 CrossRefGoogle Scholar
  111. 111.
    Feiz A, Shakibaei GI, Yasaei Z, Reza Khavasi H, Bazgir A (2011) A new four-component reaction for the synthesis of spiro[4H-indeno[1,2-b]pyridine-4,\(3^\prime \)-[3H]indoles]. Helv Chim Acta 94:1628–1637. doi: 10.1002/hlca.201100047 CrossRefGoogle Scholar
  112. 112.
    Ghahremanzadeh R, Fereshtehnejad F, Bazgir A (2010) One-pot synthesis of spiro[diindeno[1,2-b:\(2^\prime,1^\prime \)-e]pyridine-11,\(3^\prime \) -indoline]-triones. J Heterocycl Chem 47:1031–1034. doi: 10.1002/jhet.412 CrossRefGoogle Scholar
  113. 113.
    Ghahremanzadeh R, Imani Shakibaei G, Ahadi S, Bazgir A (2009) One-pot, pseudo four-component synthesis of a spiro[diindeno[1,2-b:\(2^\prime,1^\prime \)-e]pyridine-11,\(3^\prime \) -indoline]-trione library. J Comb Chem 12:191–194. doi: 10.1021/cc900130a CrossRefGoogle Scholar
  114. 114.
    Ghahremanzadeh R, Ahadi S, Shakibaei GI, Bazgir A (2010) Grindstone chemistry: one-pot synthesis of spiro[diindenopyridine-indoline]triones and spiro[acenaphthylene-diindenopyridine]triones. Tetrahedron Lett 51:499–502. doi: 10.1016/j.tetlet.2009.11.041 CrossRefGoogle Scholar
  115. 115.
    Toda F, Tanaka K, Sekikawa A (1987) Host-guest complex formation by a solid–solid reaction. J Chem Soc Chem Commun 4:279–280. doi: 10.1039/C39870000279 CrossRefGoogle Scholar
  116. 116.
    Samai S, Chandra Nandi G, Kumar R, Singh MS (2009) Multicomponent one-pot solvent-free synthesis of functionalized unsymmetrical dihydro-1H-indeno[1,2-b]pyridines. Tetrahedron Lett 50:7096–7098. doi: 10.1016/j.tetlet.2009.10.022 CrossRefGoogle Scholar
  117. 117.
    Khaksar S, Gholami M (2014) An eco-benign and highly efficient access to dihydro-1H-indeno [1, 2-b] pyridines in 2, 2, 2-trifluoroethanol. J Liq Chromatogr 196:159–162. doi: 10.1016/j.molliq.2014.03.030 Google Scholar
  118. 118.
    Evans CG, Jinwal UK, Makley LN, Dickey CA, Gestwicki JE (2010) Identification of dihydropyridines that reduce cellular tau levels. Chem Commun 47:529–531. doi: 10.1039/c0cc02253e CrossRefGoogle Scholar
  119. 119.
    Li M, Yang W-L, Wen L-R, Li F-Q (2008) A first resource-efficient and highly flexible procedure for a four-component synthesis of dispiropyrrolidines. Eur J Org Chem 16:2751–2758CrossRefGoogle Scholar
  120. 120.
    Liu F-H, Song Y-B, Zhai L-J, Li M (2014) Synthesis of spiropyrrolidines via five-component 1,3-dipolar cycloaddition of azomethine ylides and olefinic dipolarophiles generated in situ simultaneously. J Heterocycl Chem 52:322–329. doi: 10.1002/jhet.1952 CrossRefGoogle Scholar
  121. 121.
    Augstein J, Ham AL, Leeming PR (1972) Relation between antihistamine and antidepressant activity in hexahydroindenopyridines. J Med Chem 15:466–470. doi: 10.1021/jm00275a006 CrossRefPubMedGoogle Scholar
  122. 122.
    Kunstmann R, Fischer G (1984) Molecular analysis of hexahydro-1H-indeno[1,2-b]pyridines: potential antidepressants. J Med Chem 27:1312–1316. doi: 10.1021/jm00376a015 CrossRefPubMedGoogle Scholar
  123. 123.
    Wakabayashi R, Kurahashi T, Matsubara S (2012) Cobalt(III) porphyrin catalyzed aza-Diels–Alder reaction. Org Lett 14:4794–4797. doi: 10.1021/ol3020946 CrossRefPubMedGoogle Scholar
  124. 124.
    Shi B, Lewis W, Campbell IB, Moody CJ (2009) A concise route to pyridines from hydrazides by metal carbene N-H insertion, 1,2,4-triazine formation, and Diels–Alder reaction. Org Lett 11:3686–3688. doi: 10.1021/ol901502u CrossRefPubMedGoogle Scholar
  125. 125.
    Bhuyan D, Sarmah MM, Dommaraju Y, Prajapati D (2014) Microwave-promoted efficient synthesis of spiroindenotetrahydropyridine derivatives via a catalyst- and solvent-free pseudo one-pot five-component tandem Knoevenagel/aza-Diels-Alder reaction. Tetrahedron Lett 55:5133–5136. doi: 10.1016/j.tetlet.2014.07.086 CrossRefGoogle Scholar
  126. 126.
    Seniutinas G, Tomašiunas R, Czaplicki R, Sahraoui B, Daškevičiene M, Getautis V, Balevičius Z (2012) Arylmethylene-1,3-indandione based molecular glasses: third order optical non-linearity. Dyes Pigment 95:33–40. doi: 10.1016/j.dyepig.2012.03.011 CrossRefGoogle Scholar
  127. 127.
    Janeliunas D, Daskeviciene M, Getautis V, Gaidelis V, Jankauskas V, Sidaravicius J (2008) Electron transporting molecular glasses based on arylmethylene-1,3-indandione. Mol Cryst Liq Cryst 497:173–185. doi: 10.1080/15421400802462631 CrossRefGoogle Scholar
  128. 128.
    Stumbraite J, Daskeviciene M, Degutyte R, Jankauskas V, Getautis V (2007) Synthesis of aryl(hetero)methylene-1,3-indandione based molecular glasses. Monatsh Chem 138:1243–1248. doi: 10.1007/s00706-007-0748-5 CrossRefGoogle Scholar
  129. 129.
    Hosseinzadeh R, Tajbakhsh M, Mohadjerani M, Lasemi Z (2009) Ethylenebis(N-methylimidazolium) ditribromide (EBMIDTB): an efficient reagent for the monobromination of 1,3-diketones and \(\beta \)-ketoesters. Monatsh Chem 140:57–60. doi: 10.1007/s00706-008-0020-7 CrossRefGoogle Scholar
  130. 130.
    Hosseinzadeh R, Tajbakhsh M, Khaledi HKG (2007) Ethylenebis (N-methylimidazolium) chlorochromate (EBMICC): an efficient and selective reagent for the oxidation of thiols to disulfides. Monatsh Chem 138:871–873. doi: 10.1007/s00706-007-0685-3 CrossRefGoogle Scholar
  131. 131.
    El-Desoky El-Sayed I, Al-Shihry SS (2008) Synthesis and reactions of some new benzopyranone derivatives with potential biological activities. J Heterocycl Chem 45:1855–1864. doi: 10.1002/jhet.5570450648 CrossRefGoogle Scholar
  132. 132.
    Mustafa A (1967) Furopyranes and Furopyrones in the chemistry of heterocyclic compounds. A. Weisberger Interscience edn. Wiley, LondonCrossRefGoogle Scholar
  133. 133.
    Bauer J, Selway JWT, Batchelor JF, Tisdale M, Coell IC, Young DAB (1981) \(4^\prime \),6-Dichloroflavan (BW683C), a new anti-rhinovirus compound. Nature 292:369–370. doi: 10.1038/292369a0
  134. 134.
    Bailey DM (1984) Annual reports in medicinal chemistry. Academic Press Inc 19:1212Google Scholar
  135. 135.
    Rao YJ, Krupadanam GLD (2000) A facile synthesis of 7,8/6,7 fused pyrano[4,3-b] pyridinochromones and evaluation of antibacterial activity. Indian J Chem 39B:610–613Google Scholar
  136. 136.
    Mikey JAA, Sharaf HH (1998) Synthesis and biological activity of 5H- furo-(3,2) (1) benzopyran-5-one derivatives. Indian J Chem 37B:68Google Scholar
  137. 137.
    Khafagy MM, Abdel-Wahab AHF, Eid FA, El-Agrody AM (2002) Synthesis of halogen derivatives of benzo[ h]chromene and benzo[ a]anthracene with promising antimicrobial activities. IL Farmaco 57:715–722CrossRefPubMedGoogle Scholar
  138. 138.
    Llano J, Raber J, Erksson LA (2003) Theoretical study of phototoxic reactions of psoralens. J Photochem Photobiol Chem 154:235–243. doi: 10.1016/S1010-6030(02)00351-9 CrossRefGoogle Scholar
  139. 139.
    Tolshchina SG, Ishmetova RI, Ignatenko NK, Korotina AV, Slepukhin PA, Rusinov GL, Charushin VN (2013) Synthesis and transformations of cyanomethyl-1,2,4,5-tetrazines. Chem Heterocycl Compd 49:604–617. doi: 10.1007/s10593-013-1288-z CrossRefGoogle Scholar
  140. 140.
    Zhao Z, Lam JW, Tang BZ (2012) Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes. J Mater Chem 22:23726–23740. doi: 10.1039/C2JM31949G CrossRefGoogle Scholar
  141. 141.
    Tong J, Wang Y, Mei J, Wang J, Qin A, Sun JZ, Tang BZ (2014) A 1,3-indandione-functionalized tetraphenylethene: aggregation-induced emission, solvatochromism, mechanochromism, and potential application as a multiresponsive fluorescent probe. Chem Eur J 20:4661–4670. doi: 10.1002/chem.201304174 CrossRefPubMedGoogle Scholar
  142. 142.
    Wang L, Du J, Cao D (2014) A colorimetric and fluorescent probe containing diketopyrrolopyrrole and 1,3-indanedione for cyanide detection based on exciplex signaling mechanism. Sens Actuators B 198:455–461. doi: 10.1016/j.snb.2014.03.046 CrossRefGoogle Scholar
  143. 143.
    Dabholkar VV, Patil SR, Pandey RV (2013) Dimethylformamide catalyzed synthesis of novel heterocycles-their characterization and antimicrobial evaluation. J Heterocycl Chem 50:403–407. doi: 10.1002/jhet.1073 CrossRefGoogle Scholar
  144. 144.
    Sharma LK, Kim KB, Elliott GI (2011) A selective solvent-free self-condensation of carbonyl compounds utilizing microwave irradiation. Green Chem 13:1546–1549. doi: 10.1039/c1gc15164a CrossRefGoogle Scholar
  145. 145.
    Taurins A (1977) Nonexistence of the alleged isobindone. The aldol–retroaldol reaction of 1, 3-indandione. Can J Chem 55:3587–3589. doi: 10.1139/v77-503 CrossRefGoogle Scholar
  146. 146.
    Jacob K, Sigalov M, Becker JY, Ellern A, Khodorkovsky V (2000) Self-condensation of 1, 3-indandione: a reinvestigation. Eur J Org Chem 2000:2047–2055. doi: 10.1002/1099-0690(200006) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Chemistry, School of SciencesAlzahra UniversityTehranIran

Personalised recommendations